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Project Summary

We study stability and performance robustness properties of linear multivari-
able feedback systems with several modelling errors. Each modelling error is
assumed to be a stable unstructured perturbation that satisfies a frequency de-
pendent norm bound but is otherwise arbitrary. The structured singular value is
used to provide a stability margin for such an uncertainty description. Since the
structured singular value is calculated via a numerical optimisation procedure, it
may be difficult to obtain insight into the relation between its sise and the plant,
compensator, and design specifications for the robustness problem. We derive
bounds and approximations for the structured singular value as a method for
providing such insight. Our results are applied first to analyse robustness diffi-
culties that may be associated with an ill-conditioned plant, and next to develop
design rules. In particular, we develop a procedure for selecting weightings to be
used in the LQG/LTR and H* synthesis problems so that the solutions to these
optimisation problems tends to minimise the structured singular value.
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Chapter 1

Introduction

The problem of designing a feedback system to satisfy a performance specifica-
tion and to be robustly stable against plant modelling errors is of fundamental
importance in control theory. Indeed, over the last 10 years, this problem has
received renewed attention, particularly in the context of multivariable systems
(e.g. [DoS81), [SLHS1), [Fra82], [Fra87], [Doy87], [Fra87]). Singular value analy-
sis, based upon the singular value norm of a matrix transfer function, has served
as an important tool for characterising both performance and stability robustness
properties of a multivariable feedback system, and has allowed the generalisa-
tion of many useful concepts from classical feedback theory for scalar systems to
multivariable systems.

Unfortunately, singular value analysis techniques are not applicable to many
design problems of interest. For example, singular value robustness analysis is
most useful when uncertainty is isolated at only one point in the system. When
uncertainty and modelling errors are present at several points in the system,
singular value analysis tends to yield estimates of stability robustness that are




either optimistic (by testing robustness against only one modelling error at a
time) or pessimistic (by testing against a broader class of uncertainty than is
actually present). Furthermore, singular value analysis is useful only for test-
ing nominal performance properties of a system; obviously, performance should
also be robust against modelling error. It may be shown [DWS82] that the ro-
bust performance problem is equivalent to one of stability robustness with an
additional source of uncertainty that represents the performance specification.
Hence, robust performance problems reduce to problems of stability robustness
with respect to several sources of uncertainty, and the deficiencies of singular
value analysis described above also apply to the analysis of robust performance.

To address the limitations of singular value analysis, Doyle ([Doy82], [DWS82])
introduced the structured singular value, an analysis tool that directly addresses
the problem of stability robustness against several sources of modelling uncer-
tainty, and thus also addresses the robust performance problem. Essentially,
the structured singular value provides a precise stability margin against several

simultaneous sources of modelling error.

With the aid of singular value and structured singular value analysis, several
methodologies for the design of robust multivariable feedback systems have been
proposed. Among these are LQG/LTR ([DoS81], [StA87]), H* optimisation
[Fra87], and structured singular value synthesis [Doy85]. At present, each of these
methodologies suffers from at least one shortcoming. For example, the LQG/LTR
methodology is applicable only to robustness problems with one source of mod-
elling error. This shortcoming is overcome by the structured singular value syn-
thesis methodology; however, the latter methodology is experimental and tends
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to generate exceedingly high order compensators.

It seems clear that additional insights into the properties of multivariable
systems with several sources of uncertainty will be needed before a completely
satisfactory design methodology can be developed. In particular, multivariable
systems can possess robustness difficulties having no analogue in their scalar
counterparts. For example, it has been observed by several researchers ([Ste84],
[Ste85], [Ste87], [Doy87], [NeM87], [SMD88), [Fre89a), Fre89b]) that systems with
ill-conditioned plants can cause robustness difficulties when modelling error is
present at more than one loop location. Ill-conditioned plants arise in fields as
diverse as aircraft control [Enn87] and chemical process control [SMD88]. From
a systems viewpoint, ill-conditioning at a frequency means that the gain of the
plant exhibits a strong directional dependence; i.e., certain input sinusoids at
a frequency for which the plant is ill-conditioned will be amplified much more
than will others. A thorough understanding of robustness problems caused by
plant ill-conditioning is not yet available, nor is a design methodology capable of
coping with these difficulties.

The work performed under this contract represents substantial progress to-
ward understanding the robustness properties of multivariable systems with sev-
eral sources of uncertainty, and toward design problems associated with an ill-
conditioned plant. The springboard for the present work is provided by the
results of [Fre89a, and [Fre89b]. To summarize these results briefly, the stabil-
ity robustness problem with two sources of uncertainty is analysed to determine
when a system that is robust against each source of modelling error (assuming
that the other is not present) can nevertheless be destabilised by small simul-
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taneous modelling errors. These results are then applied to the ill-conditioned
plant problem. A sensitivity analysis is performed to detect small modelling
errors that strongly affect system stability robustness and performance. These
modelling errors are then used to derive bounds upon the stability robustness
margin, as quantified by the structured singular value. The significance of these
bounds is that they express the interrelation among the plant directionality prop-
erties, the design specifications, and the compensator. This information suggests
a strategy for compensator design to achieve robust performance and stability

despite plant ill-conditioning.

The research described in this report contributes to the understanding of
multivariable robustness problems in several ways. Our overall approach is sum-
marized as follows. We shall study robustness problems that may be analysed
using the Doyle’s structured singular value (SSV). Because calculation of the
SSV involves numerical optimization procedures, it is difficult to obtain insight
into the relation between its size and the plant, compensator, and design spec-
ifications. Such insight is useful for several reasons. First, one would like to
identify combinations of plant properties and design specifications that are in-
herently difficult to satisfy. Second, one would like to have the capability to
manipulate feedback properties, such as robustness and performance, by modify-
ing the compensator. Our approach to obtaining such insight is to derive bounds
and approximations to the S88V. To be useful, these bounds and approximations
must be both reasonably accurate, and should also display the dependence of
the SSV upon plant, compensator, and design specifications. Once such bounds
and approximations have been derived, they are then analysed to provide insight




into fundamental design limitations, and to suggest compensation strategies. In
particular, we incorporate the information gleaned from the bounds into a se-
lection procedure for the weightings used in LQG/LTR, H*, and H? synthesis

procedures.

The remainder of this report is outlined as follows. In Chapter 2 we shall
derive bounds upon the SSV for robustness problems with two or three sources
of uncertainty. The bounds with two sources of uncertainty improve those ap-
pearing in [Fre89a), and [Fre89b), while those with three sources of uncertainty
are new. In Chapter 3, we analyse a specific robustness problem, that of output
performance with respect to input uncertainty which is diagonal or block diago-
nal. Using a sensitivity analysis, as well as the bounds from Chapter 2 for three
sources of uncertainty, we study the design difficulties posed by an ill-conditioned
plant for such a robustness problem. In Chapter 4 we develop a framework for
analysing robustness with respect to several sources of uncertainty. We identify
certain interaction parameters, whose sise determines the extent to which inter-
actions among several modelling errors can cause robustness difficuity, and use
these parameters to derive bounds upon the SSV. Chapters 5 and 6 are devoted
to methods of incorporating insights obtained from our analyses into the H®
and LQG/LTR design methodologies. Chapter 7 contains directions for further
research.




Chapter 2

Bounds on the Structured
Singular Value with Two or
Three Sources of Uncertainty

2.1 Introduction

The purpose of this chapter is to present bounds upon the structured singular
value (SSV) with two or three sources of uncertainty. For two sources of uncer-
tainty, our bounds improve those in [Fre89a] and [Fre89b]. For three sources of
uncertainty, our bounds can be shown to improve those of Demmel [Dem88]. Ap-
plications of our bounds to specific classes of robustness problems will be found
in Chapter 3 of this report.

The remainder of this chapter is organised as follows. Section 2.2 briefly
reviews the structured singular value and its properties. Section 2.3 contains our
main results, including both lower and upper bounds upon the 3-block structured
singular value. These bounds are expressed in terms of a set of interaction
parameters that essentially determine how several uncertainties can interact to




cause robustness difficulties. The research described in this chapter is discussed
in [ChF89¢] .

2.2 Properties of the Structured Singular Value

We shall now briefly review those properties of the structured singular value used
in this chapter; a complete discussion and examples are found in [Doy832]. The
first step in the structured singular value analysis is to rearrange the block dia-
gram . { the feedback system into the form shown in Figure 2.1. The uncertainty
matrix A(s) is assumed to lie in the set

A ={A(s): A(s) = diag[Ay(s), As(s), -+, Au(s)], A; € C¥*¥ and stable}
(2.3.1)
It is often convenient to assume that system uncertainties have been scaled to
satisfy the upper bound 2{A;(jw)] < 74, Vw, Vi, and to introduce the set A, =
{ A(s) : A(s) € A and 3[A(jw)] < 7, Vw }. The interconnection matrix

M(s) = [Miy(s)] 5,5 =1,2,--+,k, Miy(s) € C*"™ (23.2)

is stable if the feedback system is nominally stable. At each frequency, the
structured singular value, denoted u[M), is defined! by [Doy82], [DWS82])?
det[I + MA]#0VA € A

_Jo
uiM] = { 1/(minaca{2(A] : det[I + MA] = 0}) otherwise
(2.2.3)
1Throughout this note, we suppress dependence upon frequency whenever appropriate.

3By a mild abuse of notation, the symbol A will occasionally be used to demote the set of
constant complex matrices with block diagonal structure (2.2.1).
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M (s)

A (s) r————ee

Figure 2.1: Block Diagram for Structured Singular Value Analysis




Hence, by definition, the reciprocal of the structured singular value is a fre-
quency dependent stability margin with respect to uncertainty of the form (2.2.1),
and a nominally stable feedback system will be robustly stable against all uncer-
tainty in the set A, if and only if u[M(jw)] < 1/4, Yw.

The value of u[M] can be calculated as follows. Define the set
D= { d‘dﬂld1]j,, dgfh, seey d.Ij.] cdseR, d; > 0} (2.2.4)

where I, denotes the identity matrix of dimension k;. It was shown in [Doy82]
that
: -1
ulM] < jnf 2[DMD" (2.2.5)

In particular, the upper bound infpep 2[DMD™!] is equal to u{M] when the
system has three or fewer blocks of uncertainty, namely, £ < 8. This fact may
be used to derive bounds upon the structured singular value.

2.3 Lower and Upper Bounds of u[M]

In this section we present both lower and upper bounds on the 3-block structured
singular value. For convenience, we shall first denote o;; = 3[M;;), and introduce

the following parameters that will be used subsequently in deriving the bounds.
B(s,5) = /005, Vi#)
(3,5, k) = (oisonom)/® Vits#k
$1 = Max; oy (2.3.1)
s = maxq; u(s, 5)
py = max;;, p(s, j, k)

Interpretations of these parameters, which we shall term “interaction parame-
ters,” will become available as we develop bounds upon the structured singular




value. For motivation, let us postulate an analysis procedure wherein we test
robustness against uncertainties taken first one at a time, then two at a time
and finally all three at a time. We wish, in particular, to understand when two
(or three) uncertainties can interact to cause robustness difficulties even though
robustnees is good with respect to uncertainties taken one (or two) at a time.
It is well-known that the stability margin against A; alone is equal to 1/0y (
[DW882]. Hence the parameter y; measures stability robustness against the un-
certainties taken one at a time. Suppose next that we consider the effects of
uncertainties taken two at a time. With no loss of generality, we may study this
problem by setting k = 2 in (2.2.1-2).

Proposition 2.3.1 Let k = 2 in (£.2.1-8), and suppose that the sinfimum in
(2.2.5) is achieved. Then

maz {p1, 2} < p[M] < p1 + pia (23.2)

Proof: In order to prove the lower bound, we note that u[M] = 2[DM D) for
some D = diag[di]s,,da]y,] € D. It then follows that u[M] > (di/d;)oy;, V5, 5.
Hence u[M] > oy, and p*(M] > (di/ds)oy;-(dj/di)os = u*(s, 5), thus establishing
the lower bound. The proof for the upper bound is found in (Fre89a].

Remark 3.8.1: The upper bound in (2.3.2) first appeared in [Fre80a)], and
the lower bound is a tighter version of that in [Fre89a]. The statement and
derivation of the improved lower bound are due to C. N. Nett (personal commu-
nication). The proof of this improved bound is significantly simpler than that of
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the bound in [Fre89a), although the proof in [Fre80a] is conceptually appealing
in that it provides the set of smallest destabilising uncertainties.

Obviously, Proposition 2.3.1 can be extended to analyse the effects of any
two uncertainties in the general k-block structured singular value problem. The
parameter u(s, 5) essentially determines how the uncertainties A; and A; can in-
teract to produce robustness difficulties; hence motivating the terminology inter-
action parameter. Note in particular that a stable system whose interconnection
matrix has the form M(a)=[ M""(‘) Male) ] cannot be destabilized by either
uncertainty acting alone; as pointed out in [Fre89a] and [NeUSS|, u[M] = 3 in
this case.

We now extend this result to the 3-block structured singular value problem.
Using Nett’s technique to extend the lower bound in (2.3.2) is straightforward.

Proposition 2.8.23 Let k = 3 in (£.2.1,2), and suppose that the infimum in
(2.2.5) is achieved. Then,

s(M)] > maz {p1, ps, s } (2.3.3)

Proof: 1t suffices to show u[M] > ps. Following the same reasoning as in the
proof of Proposition 3.1 leads to u®[M] > (di/d;)oy; - (d;/ds)ojs - (da/ds)ou, for
some d&;, d;, and dy. Thus, u®[M] > u3(s,5,k), Vi # 5 # k. (]
Remark 2.8.2: Note that this proof technique consists of finding a lower bound
upon infpep 2[DMD™!|, and may be extended to derive similar lower bounds
upon this quantity for the case of k > 3. Of course, this technique results in a
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lower bound upon u{M] only if the upper bound in (2.2.5) is an equality, and this
is guaranteed only for k = 2,3. Most algorithms (e. g., see [FaT886], [FaT88))
for computing the structured singular value actually compute this upper bound,
which Doyle has conjectured is within 15% of the true value of u[M] ([Doy82],
[DLP88]). Hence, if Doyle's conjecture is correct, one might argue that extensions
of Proposition 2.3.2 to k > 3 remain useful.

Remark 2.8.8: Alternately, one can also apply the techniques of [Fre89a] for
the case k = 2 to derive lower bounds for £ > 3. As in the case k = 2, the lower
bound obtained in this way is not as sharp as (2.8.2). However, the technique is
in principle generalizable to obtain lower bounds for arbitrary k.

Next, we present upper bounds upon u[M]. Toward this end, it is necessary

to consider two cases.

Proposition 2.8.8 Let k =3 in (2.£.1,2).
(a) Suppose ps > 0. Then

uM] < p1+ps+ 2’ (2.3.4)
If ps/ps < 1, then
M) < pr + ps + ps (2.3.5)
(b) Suppose p3 > 0. Then
WM) < i+ -+ VB maz (i, (B (23.9)
”“ﬂ/“’ > 1, then
pM] < pr+ (1+ V3 ) (2.3.7)
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Proof of (a): With no loss of generality, we assume us = 4(1,2,8). Our proof pro-

ceeds with the decomposition M = My+M;+M,, where M, = diag[My,, My, My,

0 Mn 0 0 0 Mu

M, = 0 0 M,y and My=| My; O 0 (2.3.8)
My O 0 ' 0 My O

Note first that

— 3 -1
Py = Dnéf’ 3[DM, D"}

_ di dy  ds
= “gf". maz {zdn, d—‘ﬂa, d—ldu}

The solution to this minimisation problem is obtained by setting d; = 1, d3 =
o13/u(1,2,3), ds = u(1,2,3) /0, leading to us = u(1,2,3). Next, notice that
n[M] < ‘.,uéf’c[DMD-l] <@+ OIDMgb_‘] + U[DM’D-II

where

slDMDY] = {%a,,, %a,,, ;‘:o.,}
(#ua £(2,3) 40,3 }

™ ™ ™

F 1% g E

<

This proves (2.3.4), and (2.3.5) immediately follows.
Proof of (b): Without loss of generality, we assume that uy = 4(1,2). Our
proof proceeds with the decomposition M = Mp + M; + M,, where My =
diag[M);, Mys, My,
[o M,,o] [o OM,,]
Myg=|Ms; O O] and My=] O 0 My

0 0 O My; Mgy O
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Clearly, u[M] < s + infpep {3]DMsD*] + 3[DM(D]}. Setting dy =1, d; =
013/ s yields

<p+m+ inf 3DMD?
HIM] < b+ b ‘u‘x"t.‘n"n[ D7

To solve the minimisation problem in the right hand side, note that
i -1 _ l M,
B 2007 = gt mee { i, @/, 3 g, |}
< gt maz { /oy + (1/da)oha, (1/da)Vols + 8ok }

The last minimisation problem has the solution dy = [(o}, + djody)/(c}, +
(1/ds)%03,)]1/4. Substituting the value of d; yields

[ 6 6 /4
oMY < [ut(a,3)+ut(1,9) + EL0T LR ]’

3 3 3]/
- r(u’(z,.».)—u’u,s))’+(“ (133) , L33)) ]

] [ ]
< :(#3)’+ (z%f—)’]m

3
< \|u§+2£

This proves (2.3.6), and (2.3.7) follows immediately. =

Just as the parameter u; measures how the effects of two uncertainties can
interact to cause robustness difficulties, so does u3 measure the problems caused
by interactions among all three uncertainties. Indeed, suppose that the system
interconnection matrix has the form of M;(s), or M;(s), defined as in (2.3.8).
Since 1 = u3 = 0, neither of these systems can be destabilised by uncertainties
acting individually or in pairs. However, each system can be destabilised by
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a combination of A;, A;, and As. The following corollary is an immediate
consequence of (2.3.3) and (2.3.4).

Corollary 3.3.4 Let M; and M; be defined as in (2.9.8). Then,

(s)
uiMy] = #(1,2,3) (2.3.9)

o)
s[Ms] = p(1,3,2) (2.3.10)

Hence the first upper bound (2.3.4) is useful in the case that the most significant
difficulty is due to the interaction of all three uncertainties, while the second
upper bound (2.3.6) is useful in the case that the most significant difficulty is
due to the interaction of just two of the uncertainties. An interesting open
problem is whether a single upper bound exists which is useful in both cases and

is not prohibitively messy.
2.4 Concluding Remarks

In this chapter we have derived both lower and upper bounds upon the struc-
tured singular value with respect to three blocks of uncertainty. Our bounds are
expressed in terms of a set of parameters that determine how two or three un-
certainties can interact to cause robustness difficulties. These bounds appear to
give reasonably tight estimates of the structured singular value. Specifically, the
upper bounds were shown to be within a factor of three of the lower bound on
one occasion, while within a factor of 2+ /3 (=5 3.73) on the other. It is interest-
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ing to note that our bounds are substantially tighter, and have more interesting
interpretations, than those developed in [Dems88].

More importantly, our bounds may be used to study various robustness analy-
sis and design problems. In applying these bounds, we found that the blocks M;;
of the interconnection matrix will be mutually interrelated, and, as in [Fre89a),
it is important to analyze this interrelation to obtain design insight.

We conclude this chapter by pointing out the potential extensions of these
bounds to the k-block structured singular value, with & > 3. Many of the present
results can be extended; however, the technique used to derive the lower bounds
may not. The major obstacle in achieving this, of course, is the invalidity of the
equality u[M] = infpep 3[DM D] in the general case.
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Chapter 3

Robust Performance with
Respect to Diagonal Input
Uncertainty |

3.1 Introduction

In this chapter we shall apply the results of Chapter 2 to a specific class of
robust performance problems. For motivation, consider the problem of main-
taining the output sensitivity function small, to achieve disturbance attenuation,
despite the presence of unstructured multiplicative uncertainty at the plant in-
put. Analysis of this problem has exposed potential design difficulties when the
plant transfer function matrix is ll-conditioned at frequencies near crossover. By
“ill-conditioned,” we mean that the gain of the plant, at a frequency of interest,
exhibits a strong directional dependence: some input signals will be amplified
much more than will others. Although no conclusive proof has yet appeared,
anecdotal evidence suggests that ill-conditioned plants may be inherently dif-
ficult to robustly control, at least for certain types of plant uncertainty, and
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that the size of the plant condition number is an indicator of the degree of the
difficulty in achieving robustness [Fre89a], [Fre89b], [NeM87|, [SMD88], [Ste85],
[Ste8T], [SkMST].

The tentative conclusion that an ill-conditioned plant is inherently difficult
to robustly control depends critically upon the assumption that the input uncer-
tainty is unstructured, and can therefore introduce coupling among different plant
inputs. Often, however, physical considerations dictate that it is more reasonable
to assume that uncertainty cannot introduce such coupling, or can introduce cou-
pling only among a subset of the inputs. Examples arise in diverse applications,
such as process control [SkM87], [SMD88] and aircraft control [Enn87). This
property is modelled mathematically by assuming that the input uncertainty has
a diagonal or block diagonal structure. In {SMD8S], it is demonstrated via ex-
amples that ill-conditioned plants can sometimes cause design difficulties when
input uncertainty is constrained to be diagonal (i.e., to introduce no coupling
between inputs), but that sometimes no such difficulty is encountered. Appeal-
ing physical explanations of this phenomenon are presented in [SMD88], and the
extent of the potential robustness difficulty depends upon the input directional-
ity properties of the plant, as well as its condition number. It is also remarked
[SkM87] that the plant relative gain array may be a useful indicator of potential
robustness difficulty for this problem. The analysis in [SkM87], [SMD88] focuses
in particular upon robustness difficulties that can be encountered through use of
a compensator that explicitly inverts the plant model.

Our purpose in this chapter is to provide a framework useful for analysing the
degree of difficulty inherent in the robust performance problem when the input
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uncertainty is modelled as a diagonal or block diagonal matrix. An outline of
our results follows. In Section 3.2, we introduce notation and define the robust
performance problem of maintaining the output sensitivity function small despite
the presence of block diagonal uncertainty at the plant input. Section 3.3 con-
tains initial results: we calculate the first- and second-order effects of the input
uncertainty upon the output sensitivity function, and point out conditions on the
closed-loop shapes which must be satisfied if these effects are to be kept small. In
Section 3.4, we review the use of the structured singular value [Doy82] as a test
for robust performance. Since the interrelation among the plant, compensator,
uncertainty structure, and sise of the structured singular value is rather compli-
cated, we use the frequency dependent bounds upon the structured singular value
derived in Chapter 2 to provide useful insights into this interrelation. These
bounds are stated in terms of snteraction parameters; keeping these parameters
small is approximately equivalent to satisfying the goal of robust performance.
Furthermore, the interaction parameters are very closely related to the first-
and second-order effects of input uncertainty that were calculated in Section 3.3.
Next, in Section 3.5, we analyse the problem of keeping the interaction parame-
ters small, and show that the difficulty of this problem depends upon a robustness
sndicator which is a function of both the plant condition number and its input
directionality properties. In Section 3.6, we briefly discuss and compare the rel-
ative gain array to our new robustness indicator. Examples are given in Section
3.7, and concluding remarks are made in Section 3.8. The research described in
this chapter is discussed in [ChF89a).
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3.2 The Robust Performance Problem

Consider the linear time-invariant feedback system depicted in Figure 3.1. The
transfer functions P(s) and F(s) are those of the plant model and compensator,
respectively. We shall assume' that the plant has n inputs and outputs, and
that detP(s) # 0. The signals r(s), d(s), and y(s) are the reference input,
disturbance input, and system output, respectively. Define the input open-loop
transfer function, sensitivity function, and complementary sensitivity function:

Li(s) = F(s)P(s), Si(s) = [I + Le(s)]™", Tr(s) = Lr()[I + Le(s)]™"  (3.2.1)

and the output open-loop transfer function, sensitivity function, and complemen-

tary sensitivity function:

Lo(s) = P(s)F(s), So(s) = [I + Lo(s)]™*, To(s) = Lo(s)[I + Lo(s)]™? (3.2.2)

The following notation will be used. Let RH™ denote the set of proper
rational matrices that are stable, i.e. that have no poles in the closed right half
plane. Given G(s) € RH™, define |G|« = sup,3[G(jw)], where 3[:| denotes
the largest singular value of a matrix [GoV83]. Define also the set

D, ={G(s) € RH™: |Gllc <7} (3.2.3)

When we refer to a matrix in D, the dimensions will be clear from the context.

Finally, we suppress dependence upon frequency whenever convenient.

10ur results extend to nonsquare plants that satisfy the relevant assumption of left or right
invertibility.




r (s)

+]d@®

» P(s)

y(s)

F (s)

Figure 3.1: Feedback Configuration
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We now describe the design specifications that our system is to satisfy. Sup-
pose that the true plant is given by

P'(s) = P(s)[I + Ry(s)As(s)] (3.2.4)
The matrix A;(s) may lie anywhere in a set of form

A, = {disglAr, Ag] : Ay € C¥, A, € CB-¥XE-D), A, eD,, i=1,3}
(3.2.5)
where 0 < k < n. We say that each A; is an unstructured uncertainty. The
matrix Ry(s) = diag[ri(s)Is, ra(s)Is-a] is dimensioned compatibly with A;(s)
(Iy and I,_, are identity matrices). The weighting functions r,(s) and rs(s)
are chosen to be stable and to have stable inverses, and are used to model the
frequency dependence of the leve] of uncertainty.

Our first design goals are to achieve nominal internal stability (cf. [Vid85),
Section 5.1) and to maintain stability robust against the uncertainty described
by (3.2.4). Using standard arguments (e.g., see [DoS81], [DWS82]), it is straight-
forward to show that stability will be robust against arbitrary A; € D, alone
(i.e., with A; =0, j # ¢) if and only if

I EF T Eilloo < 1/4 (3.2.6)

where E; = [I; ], E; = [I”o_‘ ] Assessing stability robustness against both

uncertainties simultaneously requires use of the structured singular value [Doy82],
and will be deferred until Section 3.4.

We also wish to satisfy the nominal performance goal of reducing the effect of
the disturbance input upon the system output. We say that this goal is achieved
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lIrsSolle < 1 (3.2.7)

where r3(s) is a weighting function whose sise indicates the relative importance
of disturbance reduction at each frequency. Next, we demand that performance
be robust against uncertainty. Hence, for a given <, we require that

lirsSollee <1, VA; € A, (3.3.8)
where S, = [I + P'F|™.

We shall need to use the singular value decomposition [GoV838| of the plant to
describe its directionality properties; for a detailed discussion, see e.g., [FrL86),
[Fre89a], and [Fre80]. Let the singular value decomposition of the plant trans-
fer function, evaluated at a fixed frequency, be denoted P = WTZ¥, where
T = diag[ry, 13, <+ Tu|, W = [y, w3, *++, w,], and Z = [#;, 53, -+, 8,]. The
diagonal elements of T are termed the singular values of P, and are ordered
so that #[P] =1 > 13 > -+ > 1, = g[P] 2 0. The columns of the unitary
matrices W and Z are termed the left and right singular vectors, respectively.
The largest and smallest singular values of P(jw) have interpretations as the
largest and smallest possible gains at frequency w. The condition number of the
plant is defined as x[P] = 8[P]/g{P]. i the condition number is very large at a
frequency, then the gain of the system is strongly directional at that frequency,
and the plant is said to be sli-conditioned [GoV83|.

It will prove convenient to adopt the following notation. Consider a matrix
whose columns form an orthonormal basis for a k-dimensional subspace of C®.
We denote the matrix by an uppercase letter (or a lowercase letter in the case
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k = 1), and the associated subspace by the boldface version of the same letter
(e.g., the columns of X € C**X form an orthonormal basis for the k-dimensional

subspace X C C®).

Finally, we need to define a specific class of compensators which we shall term
plant-inverting compensators. Such compensators were discussed in [Fre89b),
[Fre90], [SkM87], and are useful in revealing design difficulties associated with
ill-conditioned plants. A plant-inverting compensator F(s) is of the form

F(s) =1(s)P(s) (3.2.9)

where [(s) is a scalar transfer function selected so that F(s) is proper. Obviously,
use of a plant-inverting compensator requires that the plant be stable and have
a stable inverse. For later reference, note that with such a compensator the
two sets of transfer functions (3.2.1-2) are identical. We shall denote these by
Lo(s) = Ly(s) = I(s)I, So(s) = Si(s) = s(s)I, and To(s) = T;(s) = t(s)I, where
8(s) = 1/(1+I(s)) and t(s) = I(s)/(1 + I(s)).

3.3 First- and Second-Order Effects of Input
Uncertainty upon Output Sensitivity

The robust performance problem posed in the preceding section requires that the
output sensitivity function be kept small despite the presence of block diagonal
uncertainty at the plant input. In this section we shall study this problem by
investigating the first- and second-order effects of input uncertainty upon output
sensitivity. As we shall show in Section 3.4, an understanding of only the first-
and second-order effects is sufficient to allow development of qualitative design
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rules for this robust performance problem.
Lemma 38.8.1 Assume that P' has the form defined in (3.8.3-4). Then Sp =
[I+ P'F]™* has the form S} = So + S} + S5 + O(A}), vhere

S} = —-SoPRiAIP Ty (3.3.1)

and
Sa = SoPRIAITIR; A P ~o (3.3.2)

Proof: The proof follows from straightforward manipulations as in the proof
of Lemma 4 of [Fre8ga).

Lemma 3.3.1 allows an approximate decomposition of S} into the sum of the
seroth order term S, first order term Sj, and second order term S3. Achieving
robust performance requires that S} and S} be kept small. Let us initially
consider the first order effects.

Proposition 8.8.2 Suppose that A; € A,,. Then

3
sup 2[S5] <) | i | 8[So PELO[Ef P~T)] (3.3.3)
As€A, i=1
and
sup 3(S}] > ymax | 7 | 2[So PE|8[EF P~ To) (3.3.4)
A€EA, ‘
Proof: The upper bound follows by noting that [
S} = —11SoPE\ALEF P~ 'To — r4So PEL AL EY P~'T, (3.3.5)




and applying the triangle inequality. The lower bound follows from: (3.3.5) by
noting that

sup 2[S:|> wsu LR
s (Sol 2 (So]

and constructing a “worst case” A, as in the proof of Lemma 5, [Fre80a).
n

It is clear that the terms? | r; | 3(So PE;|0[EF P~'Ty| characterise the first
order effects of uncertainty at the plant input upon the output sensitivity func-
tion. Hence, to achieve robust performance, it is necessary that keeping these
terms small be made a design objective.

The remainder of this section is devoted to exploring the second order effects
of input uncertainty upon the output sensitivity function.
Proposition 8.8.8 Suppose that Ar € A,. Then

2 3
sup 253 <YY" | rir; | 0|So PE)OIEF T1EjJo[Ef P'To)  (3.3.6)
A€l §=1i=1

]
Proof: The proof follows from noting that
S} = riSoPE\AEXTIE\A0ERP'T,
+ r1rsSoPE\A\EZTIE,AEE P~'T, (3.3.7)

+ rnSoPE,AETTIE\AEZ P~ To

+ r3SoPErALES TiEs 0By P7'To

In Section 3.4, we shall show that these terms, as well as those discussed following Proposition
8.3.3, are closely related to our intsraction p-remeters.




and applying the triangle inequality.
]

Proposition 3.3.3 shows that the second order effects are characterised by the
terms | rir; | 2(So PE;Jo{Eff T, E;|0{Ef P~'To]. Hence keeping these terms small
should also be included as a design objective. In this regard, we notice that
the first and fourth terms in (3.3.7) will tend to be small if the robust stability
bounds (3.2.6) are satisfied and if the first-order effects of uncertainty are small.
Analysis of the second and third terms in (3.3.7) is more problematic, and we
shall return to this point at the close of Section 3.4.

It is straightforward to extend the results of this section to analyse the first-
and second-order effects of input uncertainty modelled as an m xm block diagonal
matrix.

3.4 Structured Singular Value Analysis of the
Robust Performance Problem

The first step in applying structured singular value analysis is to reformulate
the robust performance problem as an equivalent robust stability problem by
introducing a fictitious modelling uncertainty to represent the performance spec-
ification [DW882]. For our problem, this is accomplished by supposing that the
true plant is given by

P(a) = [I + rs(0) As(s)]* P(s) (I + Ri(s) Ar(s)] (34.1)




where the input uncertainty is the same as in (3.2.3-5), As(s) is stable, and the
weighting function ry(s) is identical with that in (3.2.7). As discussed in [Doy832],
[DWS82], the next step is to define

A= diag[A;, Ag, A.] (3.4.2)

and
f)_El' T,E, r;EfT:E, —fxE" P -1To

M= rgE,' T:E, f’E,l T:E, —r,Ef P T, (3.4.3)
—f;SoPEI, —r;SoPE, r,So

By definition [Doy82], the structured singular value, denoted u[M(jw)), is the
reciprocal of a frequency dependent stability margin with respect to all three
sources of uncertainty. Define u,[M] = sup, u[M(jw)]. A nominally stable
feedback system will be robustly stable against all uncertainties of the form
(3.4.2) with A, an arbitrary member of D, if and only if p[M] < 1/4. In terms
of the original robust performance problem, we have that [|rsSp|le < 1/~ for all
A; € A, if and only if ue[M] < 1/4 [DWS82]. For the rest of this section, we
will discuss only the equivalent robust stability problem.

To obtain insight into the robust stability problem, we will work with a set
of frequency dependent bounds upon the structured singular value. To simplify
notation, we denote the block elements of M by M;;, and define

Oi5 = O[Mj] (3.4.4)

and

p1 = AX 0y (3.4.5)

Hence the system is robustly stable against the uncertainty A; alone if and only
if ou(jw) < 1/9, Vw.




Next, we define the interaction parameters (cf. Chapter 2)

ulind) = Ogon, Vi#j
wi, k) = (oyopon)'®, Vi£ji#k
M = n}sx“(‘nj)

Hs = %“(‘tjo k)

(3.4.6)
(34.7)
(3.4.8)
(3.4.9)

The interaction parameter u(s,s) determines to what extent the effects of the
two uncertainties A; and A, can interact to produce robustness difficulties. The
robust stability problem obtained by setting Ay = 0 can be studied using struc-
tured singular value techniques applied to the matrix obtained by deleting the
kth block row and column of M. Denote this matrix by M|;s. The following

result is an immediate corollary to Proposition 2.3.1.
Proposition 8.4.1 Choose s # 5 # k. Then

maz { ok, 94, u(5,5) } < u[M|i] < maz {04, o4} + u(s,5)

For our problem, the interaction parameters in (3.4.6) are

#(1,2) = \oIrnERTIEo[rEfTIE
#(1,3) = +/olrsSoPE|o|r EFP-1To)
#(2,3) = /o[rsSoPEs|o{rsEF P-1T,)

(3.4.10)

(3.4.11)
(3.4.12)
(3.4.13)

To illustrate, let us return to the problem of robust stability against block di-
agonal uncertainty at the plant input. Recall that the system is robustly stable
against A, alone (i = 1,2) if and only if (3.2.6) is satisfied. The system will be




robustly stable against A; and A, together if and only if po[M|13] < 1/7. It
follows from Proposition 3.4.1 that, in addition to keeping the diagonal blocks of
Ty small, it is also necessary to keep the product of the off-diagonal blocks small.
The latter requirement is to prevent destabilising interactions between A; and
A,.

The interaction parameters u(1,3) and x(2,3) each have an analogous inter-
pretation. Suppose that stability is robust with respect to A; and As individu-
ally. Then, to maintain robust stability against the combined effects of these two
uncertainties, it is necessary and sufficient that x(1,3) be kept small. An inspec-
tion of Proposition 3.3.2 reveals that this requirement is equivalent to keeping
the first order effects of A; upon output sensitivity small. Similar comments
apply to the combined effects of A; and A,.

We next consider the combined effects of all three uncertainties. The following
proposition is a restatement of Propositions 2.3.2 and 2.3.3, combined here for
convenience.

Proposition 3.4.3 Consider u,, us, and uy defined in (3.4.4-9). Then
()
s(M] > maz {1, pa,ps} (3.4.14)

(i) Suppose that ps # 0. If pa/ps < 1, then

p[M] < g1 + ps + pis (3.4.15)
(55) Suppose p3 # 0. If pus/pa < 1, then

BM] < p1 +2.Tdp, (3.4.16)
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For later reference, we note that for our problem,

) 1/s

s(1,2,3) = (a[r,Efr,E,]a(r.soPE,]a[r,Efr‘To] (8.4.17)

and

) 1/3

#(1,3,2) = (2[rs EF T1E1|0(rsSo P EaJoir  Ef P T (3.4.18)

From an inspection of Proposition 3.3.3 and the ensuing discussion, it follows
that keeping u;, u3 and us small is equivalent to keeping the seroth-, first-, and
second-order effects of input uncertainty upon output sensitivity small. Note in
particular that u(1,2,3) and u(1,3,2) correspond to the second and third terms
in (3.3.7). This shows that the essentials of the robust performance problem are
captured by our analysis of the first- and second-order effects of input uncertainty
upon the output sensitivity function.

3.6 A Robustness Indicator

In the previous section we have defined interaction parameters that must be kept
small if performance is to be robust. We now derive a robustness sndscator whose
sise determines the potential difficulty of this task. To simplify the exposition,
it will prove convenient to assume that the singular value decomposition of the
plant may be partitioned as

P=W\T\Z7 + W,T,Z] (3.5.1)
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where T} = diag|r,, 13, -+ -, 7], T3 = diag[n4y, M43, **+, T}y W1, Z1 € C**, and
Wi, Z; € C2*(n-1), We shall further assume that n 3> n.;, and refer to the plant
as consisting of “high and low gain subsystems™ [FrL86] with input directions
Z; and output directions W;. Finally, we shall assume that the gain in each
subsystem is uniform: r; = n, and n,; = 7. If any of the above assumptions fail
to hold, analysis may be performed using the dyadic form of the plant singular
value decomposition, and steps toward accomplishing this will be indicated in
the sequel.

We next need to describe how well the plant input directions are aligned with
the two blocks of uncertainty. We do this by introducing an angular measure
of the distance between the subspaces Zy containing the inputs to the high- and
low-gain subsystems of the plant and the subspaces Fy containing the inputs to
and outputs from each block of uncertainty. Consider the subspaces Z,, Zs, E;,
and E3, and let ¢ = min{k, I}. As discussed in Section 2 of [FrL86] and the
references cited therein, the prineipal angles [BjG73], [GoV83] & = a; > a3 >
e+ > ag = @, & € [0, x/2], between the subspaces Z; and E; are a measure of
the angular distance between these two subspaces, and thus also between their
orthogonal complements Z3 and E3. These angles have the following useful
characterisations.

Lemma 8.5.1 Monsider the mairiz

(3.5.2)

EiZ = [Ele Ef'z,]

Efz, EFZ,
Assume?® that k+! < n. Then there ezist compatibly dimensioned unitary matrices

30therwise (1 — [) + (n — k) < n, and the decomposition may be obtained by renumbering
and replacing k with n — &k and { with n — /.
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U = diag[Uy, Us] and V = diag[Vi, V4] such that

() if k 21, then

C -5 0
0 0 I,

UREBEZV =] «++ ...

S c 0

0 0O O0

(55) if k <1, then

cC 0 -8

UBEEZv=| 8 O (o]

0 I 0

| 0 O 0

0
0

In-aen)

(3.5.3)

(3.5.4)

where C = diag|cos ay, cosay, -+, cos ay] and S = diag[sin a;, sinay, *- -, sinay).

Proof: A straightforward generalisation of the C-S Decomposition of a general
unitary matrix, which is presented in [Ste77], [GoV83].

Comparing (3.5.2) with (3.5.3-4), it follows that the singular values of Ef Z;
are equal to the cosines of the principal angles, while the singular values of Ef Z,
are equal to the sines of the principal angles and (possibly) unity, and so forth.
This proves significant, as it follows from (3.3.1) and (3.5.1) that the first-order
effects of input uncertainty upon the output sensitivity function depend upon
both the plant condition number and the matrices EFZ;, 5, 5 = 1,3. The

following lemma makes this statement precise.

Lemma 3.5.3 Suppose that the plant is partitioned as in (3.5.1). Then, from
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(3.8.1), it follows that

Sé = —rISoWlTIZf ElAlE'fZ,T; lW,' To
—f;SaW;lef E’A’E" Z,T,“W,' To (3.5.5)

+other terms

Note that the first two terms in this expansion are proportional in size to the
plant condition number. Hence, if the plant is ill-conditioned, the first-order ef-
fects in (3.3.1) are potentially large. By the uniform gain assumption, the “other
terms”® in this expansion* are not proportional to the plant condition number,
and thus are of less significance. Also, this result shows that the extent to which
plant ill-conditionedness can cause design difficulty depends upon the alignment
between the subspaces Ey and Z;. To illustrate, consider S5 as the series con-
nection of So P, R;A; and P~'Tp (cf. (3.3.1)). Potential design difficulties arise
whenever the uncertainty can introduce coupling between the high- (low-) gain
subsystems of P and P~!. For example, if k = = n/2, then no coupling will be
introduced if the alignment is perfect (i.e., & = 0 or @ = x/2). Certain combi-
nations of the dimensions k, /, and n will always result in coupling, regardless of
how the subspaces are aligned. For an example, consider k =1,/ =2,and n = 4.
Also, a limiting case is when k = n, for which the uncertainty is no longer block
diagonal and the analysis reduces to that of [Fre89a]. The potential robustness
difficulties arising from these and other combinations of k, {, and n can be best
summarised by considering the interaction parameters 4(1,3) and u(2,3).

Proposition 8.5.83 Suppose that the partition (3.5.1) and the uniform gain as-

41t is straightforward to calculate these terms explicitly. Since the resulting expressions are
lengthy, they are omitted for purpose of brevity.

34




sumption hold, and that k + 1 < n. Then

#(L,3) 2 ¢[Sole(Tolpu(P] (3.5.6)
#'(2,3) 2> o[Sole[Tolon|P] (3.5.7)
where
pulP] = |nrs|x|P] { m‘:.g s, : ; : (3.5.8)
linit, k+l<n, k21
pulP] = |rars|«|P] coagls’m & :I: : :: : 3 : (3.5.9)
cos a, k+1= n k< i
Furthermore, for s = 1,2,
u2(5, 3) < 8[SoW;|o(W.E To)pis[P) + other terms (3.5.10)
»

Proof: Using standard norm inequalities and the fact that W is a unitary
matrix yields

#(1,3) 2| rirs | glSole|To)o(T: 2" By 0| B 2,1}
Setting § = 1, j = 2 and applying the uniform gain assumption gives
#*(1,3) 2| rirs | gl Sola(Tolx|Plo| 2} E)o(ES 2],

from which (3.5.6) follows. Proof of (3.5.7) is similar. The upper bound (3.5.10)
follows by substituting (3.5.1) into (3.4.12-13) and applying norm properties.




It follows from (3.5.6-7) that robustness is potentially poor at any frequency
for which the robustness indicator

6|P] 2 max pul P (8.5.11)

is large. At such frequencies, it is necessary that the output loop-transfer func-
tion be shaped so that g[So]g(To] is small. Since the “other terms” in (3.5.10)
are not proportional to the plant condition number, it follows that u(s, 3) may be
kept small by requiring the product 3{SoW,|a[W ¥ To| to be small. Comparison
with (3.5.5) shows that this strategy is equivalent to keeping the first-order ef-
fects of A; and A4 small. For purpose of comparison with the results of [Fre89a),
[Fre89b)], [Fre90], and [Ste87] we note that the case of unstructured input uncer-
tainty corresponds to setting k = n in (3.2.5). In this case the weighting r; is
irrelevant and & = 0, and hence the robustness indicator assumes a correspond-
ingly simple form:

p[P] =| r1rs | [ P] (3.5.12)

which depends solely upon the plant condition number.

In summary, we have shown that if the robustness indicator (3.5.11) is large,
then performance robustness is potentially poor. The analysis is limited, how-
ever, in that it is based solely upon the interaction parameters u(s, 3), and thus
solely upon the first order effects of uncertainty. It remains to be determined
whether performance robustness can be potentially poor because of the second-
order effects of uncertainty, even if the first-order effects are negligible. This
question translates approximately into that of determining whether the interac-
tion parameters u(t, s, k) can be large even if u; and u, are small. A somewhat




surprising result, which is applicable to systems with two inputs and two outputs,
shows that keeping the interaction parameters u4; and y; small tends to insure
that u; is small as well.
Proposition 3.5.4 Let n = 2, and let y;, s and ugs be defined in (3.4.4-9).
Then

ps < 1.62 max { 1, p2} (8.5.13)

Proof: See Appendix A.
(]

Suppose that the goals of nominal performance and robust stability against
diagonal input uncertainty are satisfied, so that u; is small. Then it follows
from Propositions 3.4.2 and 3.5.4 that the goal of achieving robust performance
essentially translates into that of keeping us small. It follows, therefore, that the
robustness indicator does adequately reflect the potential difficulty of achieving
robust performance. Finally, although it reasonable to conjecture that
Proposition 3.5.4 can be extended to the general case of block 2 x 2 uncertainty,
the proof of this proposition does not readily generalise, and the conjecture is
left for future research.

In what follows we shall discuss the robustness difficulties associated with a
plant-inverting compensator. Note first that the interaction parameter 3 =0 in
this case, so that the discussions following Proposition 3.5.4 are rendered moot.
To explain these difficulties, we first recall the following result of Stein [Ste87),
who explicitly calculates the s‘ructured singular value resulting from use of a
plant-inverting compensator in the case of unstruciured uncertainty.
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Proposition 8.5.8 [Ste87] Assume that k = n in (3.2.5), and that F(s) is
given by (3.£.9). Then

M) = |nt|® + |rss|® + |rat| - 738 - (<[P) + 1/x[P)) (3.5.14)

Hence, it follows that, for a fixed loop shape I(s), the structured singular value
will increase as the square root of the robustness indicator (3.5.12).

We next develop a corresponding result for the present problem. For no-
tational simplicity, we consider only the special case k = | = n/2, for which
p|P] = max; |r;rs|x[P] cos asin & Noticing that us = 0, 4(1,2) = 0, the bounds
given in (3.4.14) and (3.4.16) can be utilised. However, stronger results may be
obtained due to the special structure of the interconnection matrix.
Proposition 3.5.8 Assume that k = | = n/2 in (3.8.5), and that the partition
(3.5.1) and the uniform gain assumption hold. Let F(s) be given as in (3.2.9).
Then

maz {1, pa} < u[M] < 1+ V2 (3.5.15)
where
ST e
Furthermore,
#3(¢,3) > |rit| - |rss|x[P] cos asin & (3.5.17)
and

#3(4,3) < |rit| - Irso| (x| P) cos asin & + cos® g + sin® & + (1/x[P]) cos asin &)
(3.5.18)




Proof: See Appendix B.
]

Hence again, we see that for a fixed loop shape, the structured singular value
will increase with the square root of the robustness indicator (3.5.11). The main
difference is that now the robustness indicator depends not only upon the plant
condition number, but also upon the alignment angles. Motivated by these anal-
yoes and those in [SkMB87], it is of particular interest to develop an intuitive
explanation of the design difficulties associated with such a compensator. To-
ward this end, note that when the plant has the form (3.5.1), such a compensator
also has a decomposition into high and low gain subsystems. In the absence of
uncertainty, the high (or low) gains of the compensator cancel the low (or high)
gains of the plant ezactly. However, with uncertainty present, this cancellation
will be exact only sf the alignment conditions are satisfied (and hence the robust-
nees indicators are sero). Otherwise, the uncertainty can cause the high (or low)
gains of the plant and compensator to multiply one another, 80 that the resulting
series connection of plant, uncertainty, and compensator is significantly different
from its nominal value. Remarks similar to these are presented in [SMD88], and
physical interpretations are presented for robustness problems associated with
high-purity distillation columns. Our results above are appealing in that they
allow these potential difficulties to be quantified in terms of the principal angles.

Finally, if the uniform gain assumption fails to hold, then analysis can pro-
ceed using the dyadic form of the plant singular value decomposition: P =




S0 wisl . Indeed, calculations similar to those in Proposition 3.5.3 yield
#*(5,3) 2| rirs | 2[Sole(To)} - (vs/n) 5] Eill - 1 B sl (35.19)

where ||s/E;|| and || Effz,|| are the cosines of the angles between the subspaces
sy and E;, and sy and E;, respectively. Hence p[P] = max; ps[P], where

palP] = max | rirs | (r3/n) o] Bl - | BT s (3.6-20)

is a useful generalisation of the robustness indicator to this more general situa-

tion.

3.6 The Relative Gain Array

The Relative Gain Array (RGA) [Bri66] is widely used in the process control
industry to analyse interactions in multivariable systems. A number of authors
have studied robustness difficulties associated with plants having large elements
in the RGA. (For discussions of these results and lists of references, see [NeM87],
[SkM87].) Skogestad and Morari [SkM87] have demonstrated that the RGA is
useful as an indicator of potential design difficulty for the problem of maintain-
ing performance robust against diagonal multiplicative uncertainty at the plant
input. In particular, they show that the RGA is a less conservative indicator
than is the plant condition number for this particular problem. On the other
hand, they also show that the RGA can be optimistic, and can sometimes fail
to detect potential difficulties when the plant has large off-diagonal elements (cf
(SkMB87]). Our purpose in this section is to compare our robustness indicator
with the RGA, and to show that ours does not suffer from this shortcoming. It
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suffices to consider the case n = 3, and to assume that the weightings in (3.2.4)

are unity.
. For our purpose, the RGA is a matrix
_| A A
. RGA = [ ol ] (3.6.1)

where Ays = Ay, Aip = A = 1- Ay, Ay =1/ (1 - 2328) and py;, 4,5 =1,2 are
the elements of the plant transfer function matrix. For n = 2, the subspaces Z;
and E; are one-dimensional and thus will be denoted as 5y and e;, here e; and ey
correspond to the vectors e; = [;] and e3 = [(1)] The robustness indicator is

p|P) = x[P]cos asina (3.6.2)

here a denoctes the principal angle between the subspaces 5y and ¢;. The following
is adapted from [SkM87].

Proposition 8.6.1 Suppose that uncertainty has the form of (3.8.1) with n =
2, k = 1. Then the output open-loop transfer funcison can be written as L), =
(I + E)PF, where E ss an error term:

E = PAP? (3.6.3)
Furthermore,
R Pij
sup Z[E] > ymax|Ay || == 364
A’eﬁ’[] ymax | du |- 20 (3.6.4)

Proof: The proof follows from noting that [SkMB87]

- AuA; + A ’A’ —Au A - A
PAP = [ st hubs §::z‘(m)§”z ) 1) ] (3.6.5)




It follows from (3.6.4) with ¢ = 5 that large values of the relative gain | A, |
correspond to systems that are very sensitive to uncertainty. However, small
values of | A;; | need not necessarily correspond to systems that are insensitive.
Indeed, counterexamples can readily be constructed using a triangular P matrix
whose largest element is on the off-diagonal (e.g., p. 2328, [SkM87]).

Expressing the plant output with respect to the basis consisting of the left
singular vectors of the plant displays the role played by the condition number
and input directionality properties of the plant.

Proposition 8.6.2 Consider the error term (3.6.3):

Sup 3(E] > ymax(ry/n) | e || &'m | (3.6.6)

and
A:‘elz’ o[E] < 4‘7!‘!}‘?('5/ n) | 2fe || e (3.8.7)
n

Proof: The proof follows by applying norm properties to the error term 2{E],
and noting that 3[E] = 3[W ¥ EW|, where

— E"=l'1:. A“iu'l "[P]:Ll'lx Aien
WO = [ P T btn e | 6e9

]
In particular, it follows from (3.6.2) and (3.6.6) that
sup 3{E] > 4p|P] (3.6.9)
1€EA,
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Finally, the upper bound (3.6.7) shows that the error term cannot be significantly
larger than &2{A,] if the robustness indicator is small.

3.7 Examples

The authors of [SMD88] illustrated the design difficulties of ill-conditioned plants
using simplified models of the LV and DV configurations of a distillation column.
Both configurations result in an ill-conditioned plant, and both display robustness
problems when a plant-inverting compensator is used and the input uncertainty
is assumed to be unstructured. If, however, the input uncertainty is assumed to
be diagonal, then only the LV-configuration continues to pose robustness prob-
lems when a plant-inverting compensator is used. Based upon an analysis of
the directionality properties of the plants, the authors of [SMD88] presented an
intuitively appealing explanation of this phenomenon. Our intent in this section
is to demonstrate, using our robustness indicator, that the DV-configuration is
indeed less difficult to robustly control when the input uncertainty is diagonal.

The plant models for both configurations are given by

Pur(s) = [1/(150 + ) Soan “5oes 81.)

and

Pov = [1/(76s + 1)] [ :(1):::: Coot4 ]

respectively. The condition numbers are constant with frequency: x[Pry| =
141.7, x[Ppy] = 70.8. The weighting functions used in [SMD88] are r,(s) =
rs(s) = r(s) = 0.2(5s + 1)/(0.5s + 1), and ry(s) = 0.5(10s + 1)/10s. These

(3.7.2)
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data readily verify that the robustness indicator for the case of unstructured
uncertainty (cf (3.5.12)) is large. By Proposition 3.5.5, a plant-inverting com-
pensator will therefore yield poor robustness properties, and this was indeed
verified in [SMD88] using Bode plots of the structured singular value. When a
diagonal uncertainty structure is assumed, however, the robustness indicator is
given by (3.6.2). The principal angles for the two configurations are ary = 45°
and apy = 0°, respectively. Hence only the LV-configuration poses potential ro-
bustness difficulties, a fact also verified in [SMD88] using the structured singular
value plots.

To further illustrate the dependence of the structured singular value upon
the plant input directions, we alter the directions of the LV-configuration and in
the meanwhile keep its condition number unchanged. Define

P)s) = Py(s)R, R=2|°®? "“"]

sinf cosé (3.7.3)

0 _ gin 45O
:;:::o c:“;ﬁ ] is a matrix of the right singular vectors for

Pry(jw) [SMD88|]. Hence, the robustness indicator for this new plant is

where Z =

p[Po] = Irr, IIC[PLv] cosf@sind (3.7.4)

Plots of the structured singular value for the compensator® F(s) = (0.7/s) P, }(s)
versus different values of § are shown in Figure 3.2, and indeed we see that these
plots are consistent with the analyses in Section 3.5.

Finally, we note that the problem of aligning the plant input directions is one

5Note that this compensator was discussed in [SMD88] for § = 45° and when the input
uncertainty is unstructured.
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of plant configuration rather than that of compensation. This follows because the
input uncertainty is assumed to be located between the plant and compensator.

3.8 Concluding Remarks

In this Chapter we have studied a robust performance problem that arises when
the transfer function of plant model is ill-conditioned and the modelling uncer-
tainty at the plant input has block diagonal structure. Our analysis shows that
design goals should include keeping the first- and second-order effects of input
uncertainty upon the output sensitivity function small in order to achieve robust
performance, and this poses potential design difficulties for plants having large

robustness indicators.




Chapter 4

Several Sources of Modelling
Uncertainty

4.1 Introduction

An important problem in feedback design is to insure robustness of stability and
performance with respect to several sources of modelling uncertainty. A useful
stability margin for an important class of modelling uncertainties can be cal-
culated using Doyle’s structured singular value (S88V) [Doy82], [DWS82]. By
plotting the structured singular value as a function of frequency, robustness diffi-
culties associated with a given design can be reliably detected. However, because
the structured singular value is a complicated function of the plant, compensator
and uncertainty description, it is sometimes difficult to obtain design insights
using only such a plot. For example, if the system has a poor stability margin,
one would like to know how this may be improved by adjusting the compensator.
Moreover, some feedback design problems are inherently difficult, and one would
also like to know whether one is faced with such a problem and, if so, how a
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compensator may be selected to achieve a judicious tradeoff among conflicting
design objectives. The computation of the structured singular value via numer-
ical optimisation (cf. [FaT86], [FaT88|, [Hel88], [PFD88]) renders such insights
difficult to obtain.

Our goal in the present paper is to develop results that should be useful in
obtaining insights into robustness problems associated with several modelling
uncertainties. To motivate our approach, let us consider a procedure whereby
we assess stability robustness sequentially, first with respect to uncertainties
taken one at a time, then taken two at a time, and so forth. As we proceed,
we may find that a system which is robust against all combinations of & or
fewer uncertainties can nevertheless be destabilised by combinations of k + 1,
possibly small, uncertainties. Evidently, such an instability must be caused by a
harmful interaction among these k + 1 uncertainties. It is therefore of practical
interest to have a methodology for determining the existence and strength of such
interactions. Our analysis below will identify a set of interaction parameters,
which appear to be useful for this task.

Essentially, our approach in this chapter is a generalisation of that taken in
Chapters 2 and 3. We provide additional interpretations of the earlier results, and
lay the groundwork for applying our general approach to other design problems.

The remainder of this chapter is outlined as follows. In Section 4.2, we review
the definition and properties of the structured singular value. In Section 4.3 we
define the interaction parameters and show they are related to Mason'’s gain rule.
In Section 4.4 we derive bounds upon the structured singular value expressed in




terms of these parameters. Section 5§ contains an analysis of the aforementioned
robust performance problem, and we conclude our discussion in Section 4.6. Some
of the results described in this chapter are discussed in [ChF89b] and [ChF90).

4.2 Preliminaries: Properties of the Structured
Singular Value

The first step in the structured singular value analysis is to rearrange the block
diagram of the feedback system into the form shown in Figure 2.1. The uncer-
tainty matriz A(s) is assumed to lie in the set!

A,={diag|Ai(s)] : A; € C™*™ and stable, ||Asll <7, §=1,2,:--,N}

(4.2.1)
where || As||oo = sup,, 3[Ai(jw)], and 3|-] denotes the largest singular value, or the
Euclidean norm of a matrix. The interconnection matriz M(s) is a function of
the nominal plant model, the compensator, and weighting matrices introduced
to normalise the sise of the uncertainties. It is stable if the feedback system
is nominally stable. At each frequency, the structured singular value, denoted
u[M), is defined? by [Doy82].

_fo det[I + MA] #0VA € A,
KM = { 1/(minaca {2[A] : det[I + MA] = 0}) otherwise
(4.2.2)

1We assume throughout this chapter that all A,’s in (4.2.1) are distinct. The general case of
repeated A;'s is treated in [Doy82], [PFD8S].

3We shall suppress dependence upon frequency whenever appropriate, and shall occasionally
abuse notations by using the symbal A, to denote the set of constant complex matrices with
block diagonal structure (4.2.1).
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Define po[M] = sup, u[M(jw)]. Then, if the feedback system in Figure 2.1 is
nominally stable, it will be robustly stable against all uncertainty in the set A,
if and only if uo[M] < 1/.
Further properties of the structured singular value are summarised in the
following; for a complete discussion, see [Doy832)]. Define the sets
D = { diag|d,I,,, da1I,,, -, dn]n,): 4 ER,d; >0} (4¢.2.3)
where I,,, denotes the identity matrix of dimension n;, and

U = { diag[u,, u3, **-, un] : |lwll = 1, w; € C™*1 } (4.2.4)

The following facts provide tools for evaluating the structured singular value.
Fact 4.3.1 [Doy83]
: -1
p[M] < p‘%fp 3[DMD™?] (4.2.5)

Fact 4.2.3 [Doy82] Let p|:| denote the spectral radius of a matrix. Then,

M) = pps, oL X7 MY] (420

Note in particular, the upper bound * (4.2.5) is equal to u[M] when the system
has three or fewer blocks of uncertainty, namely, N < 3.

We shall partition the interconnection matrix into blocks whose dimensions
are compatible with those of the uncertainty:

M(s) = [Mi(s)], 5,5 =1,2,---,N, My(s) € C™™ (4.2.7)

and define o;; = 3{M;;]. It will often be convenient to consider the simplified sta-
bility robustness problem obtained by assuming that a subset of the uncertainty
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blocks A; are equal to sero. We introduce the following notation to describe such
a problem. Let Zy = {1, 2, ---, N}, and define

Re={{s1,° - a}: 81, 0s €EZy, 861 # -+ #1) (4.2.8)
The cardinality of N, is (f) We shall assume that the elements of Nj

have been ordered in some fashion, and shall denote these elements by Jy,

i=1,2, (’:) Hence for each i, Jy is a subset of 2y with k distinet

elements (see Example 4.3.1 for an illustration). Define

Alsu={A: A€A,, A;=0, V5 ¢ Ju} (4.29)

and

M|;,, = ({interconnection matrix M (4.2.7) with the stA block row

and column set equal to sero, Vj & Ju.} (4.2.10)

Then, it follows readily that the feedback system pictured in Figure 2.1 is robustly
stable against all uncertainties of the form (4.2.9) if and only if u[M|s,,] < 1/7.
For example, suppose that only one of the A;’s in (4.2.1) is nonsero; i.e., suppose
that we consider the set Jy; = {s}. Then, it follows from the definition (4.2.2)
that the feedback system in Figure 2.1 is robustly stable against all uncertainties
in the set A, |, if and only if oy(jw) < 1/, Yw.

4.3 Interaction Parameters

From the analysis at the close of the preceding section, it follows that if the
only nonsero blocks of the interaction matrix are those on the diagonal, then
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p|M)] = max; 0. In general, however, nonsero off-diagonal blocks will introduce
interactions between blocks of uncertainty, and thus will affect the sise of the
structured singular value. In this section we introduce a set of interaction pa-
rameters whose magnitudes are a function of the off-diagonal blocks of M, and
we shall argue that these parameters determine the extent to which interactions
among two or more blocks of uncertainty can cause stability robustness problems.

Consider the set of all possible permutations of the elements of all possible
k-dimensional subsets of Zy:

Pi = {(5183--+6a) : $1,0++, 60 € Juiy Jis € W3} (4.3.1)

Noteth.tthecudin.utyofmuqmto(‘;’)-(k-l)l. We shall assume that
the elements of P have been ordered in some fashion, and shall denote these
elements by M, § = 1,2,---,( v ),j =1,2,++,(k — 1)I. Given one of the
subsets Ji; € R;, and a permutation II); of the elements of that subset, define

the corresponding snteraction parameter of orderk:

#(Tlais) = (GisisOinis *** Oigis) (4.3.2)

and denote the largest of these by
= II 433
[T mm (M) (4.3.8)

Define also the corresponding loop of length k:

L(nﬂi) = (-1).+1M‘I‘OA"M"OA‘I oo Miy, Ay (4'3'4)

Two loops L(Ily;) and L(IN,,,,) are said to be nontouching if Jy N Jim = 0.
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Note that there is a one-to-one correspondence between the set of loops and the
set of interaction parameters.

Furthermore, the gain in each loop is related to the sise of the corresponding
interaction parameter.
Proposition 4.8.1: Consider a permutation ITy; of the integers Jy;, and the
associated loop L(Iy;). Then

sup. 2{(Maig)] = v*u*(Taiy) (4.3.8)

Example 4.8.2 Let us illustrate our notations using the following example.
Consider N = 3, Zy = {1,3,8}.
Loops of length 1:

N = {{1},{2},{3}}, Ju = {s}, M = ()
L(Ty1) = Mud;, u(IT) = 0k, g1 = max; oy

Loops of length 2:

Ry = {{1,2},{1,3},{2,3}}

Ju = {112}1 Jis = {1,3}, Jss = {2’3}
My = (12), Mas = (13), sy = (23)
L(Myy;) = —MisAsMy, A,

L(M3a1) = —MysAsMy A,

L(l'lm) = —M”A‘M”A’

#(la1) = /o130

4(Isn1) = /O190m

#(Tlas1) = (/03033

b3 = MAXy; \[0i05, s # )




Loops of length 3:

Rs = {{102! 3}}9 Jy = {1’ 2, 3}

a1y = (123), Iy = (132)

L(Myyy) = MysAsMysAsMy A,
L(Ms13) = MysAsMsAsMy A,
#(Ma11) = (01203305 ) Y3

p(Ma1s) = (013033021)Y/2

ps = max;ja(oyonon)'®, s £ 5 #k

To illustrate A,|;,, and M|,,,, consider J;3. Then

M) 0 My
M|;,=] O 0 O

Ms; 0 My
A, 0 O

0 0 A,

: fArlle < {lAs]lee < ‘7}

When all the uncertainties are scalars, then so are the blocks of M, and the
preceding definition of a loop reduces to that used in Mason’s gain formula (e.g.,
Theorem 9.15.20, [ZaD63}), which may be applied to obtain a useful expression
for det{I + MA].

Proposition 4.8.3 Assume thatn; =1,¢=1,2,--- N in (4.£.1). Then,

det[I + MA] =1+ G'(A) +G*(A) +---+ GN(A) (4.3.6)
where
-1 (3)
GYAa) = 3 3 L(Mu;) + R*(A) (4.3.7)
j=1 i=1

and R*(A) is a sum of products of nontouching loops of length < k, with the
property that each product contains exactly k A;’s.

Proof: From Mason’s formula, it follows that det(] + MA) can be expanded
into a sum of products of nontouching loops. The result is obtained by grouping
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these products into an appropriate G*(A), depending upon how many A;’s each
product contains.

It is clear, by construction, that each G*(A) represents the kth order effects
of uncertainty upon det(I + MA). Furthermore, each G*(A) is a sum of terms
involving loops of length < k. Since the maximum gain in each loop is determined
by the corresponding interaction parameter (Proposition 4.3.1), it follows that if
the interaction parameters of order < k are small, then the kth order effects will
be small also. We summarise this observation by appealing to the limiting case.

Proposition 4.3.4: Let M and A be defined as in Section 4.2, with n; = 1,5 =
1,...,N. Suppose that

wm=0, l=1,...,k (4.3.8)

Then, VA € A,
G'(A)=0,l=1,...,k (4.3.9)
[}

Keeping the interaction parameters of order < &k small is not, in general, a
necessary condition for insuring that the kth order effects of uncertainty are small.
The reason for this is that the preceding analysis takes only gain information into
account. The following example illustrates this point.

Example 4.83.5: Consider the following interconnection matrix for N = 8,




n=1:1=1,23:
011
M=|-101].
110
In this case us = 1, but G*(A) = 0. This example shows that the third-order
effects of uncertainty may equal sero even though the interaction parameters of
order three are nonsero.

As we shall see, in the multivariable case directionality as well as phase in-
formation is ignored. More importantly, our analysis implicitly assumes that the
M;;'s are mutually independent. In fact, they are each functions of the plant,
compensator, and weightings. The implications of this fact will be discussed in
Section 4.5.

Extending Proposition 4.3.3 to the multivariable case is possible using the
formula for the determinant of a block partitioned matrix (e.g., [Kai80], p. 650).
However, the complexity of the ensuing expressions renders analysis problematic.
We choose to adopt an alternate approach, by reducing the multivariable problem
to one with scalar blocks. To do this we must invoke a preliminary result.

Lemma 4.3.6: Consider the matrices M and A defined in Section 4.2 evaluated
at a fixed frequency. Suppose there exists A € A, such that (i) det[I+ MA] =0
and (ii) 8{A] = a. Then there exists A € A,, satisfying (i) and (i) with the
additional property that A = diagA,, where A; = y,z§;, where & € @, w,2; €
@™, and (|l = l|zls = 1.

Proof: Follows from the results in Section 4 of [Doy82]. [




One consequence of the above lemma is that the definition of the structured
singular value in Section 4.2 may be modified by replacing the minimisation over
A € A, with a minimisation over §;, z;, and ;. Define modified interconnection

and uncertainty matrices by
M={M;=zMyy;:4,5=1,...N} (4.3.10)
and
A = diag{41,,:s=1,...,N} (4.3.11)

Corollary 4.3.7: Consider M and A defined in Section 4.2. Then

in {2(A] : det[I + MA] =0} = Jnin {o[A] : det[I + MA] =0} (4.3.12)

It follows from (4.3.12) that Proposition 4.3.4 may be extended to multivari-
able systems. Specifically, we may apply Proposition 4.3.3 to det[I + MA]}, and
define T*(A) analogously with (4.3.7).

Proposition 4.8.8: Consider M and A defined in Section 4.2, the corresponding
interaction parameters (4.3.2-3), and the matrices M and A defined by (4.3.10-
11). Suppose that

m=0, l=1,...,k (4.3.13)

Then, V&4 €@, i=1,...,N,
G@A)=01=1,..,k (4.3.14)
]
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Proof: Each @'(K) is the sum of products of nontouching loops of order < I.
Since |M;;| < o{M], it follows from Proposition 4.3.1 that (4.3.13) implies
(4.3.14).

Let us now derive a result which emphasises the difficulty inherent in ana-
lyzing robustness for a system with a large number of uncertainties. Consider
an analysis procedure whereby we analyse robustness against uncertainties taken
one at a time, then two at a time, and so forth. At the kth step of this proce-
dure, one might find that the system is robustly stable against all combinations
of fewer than k uncertainties, but may be destabilised by some combinations of
k small uncertainties. The following result describes the extreme case of this

phenomenon.

Proposition 4.8.9: Given a permutation IIy;; = (§163 - - in) € Py, consider the

set of interconnection matrices

M(HN“) — { M;‘. # ov M.‘a # 0, s ’M(uh # 0 (4_3.15)

My, = 0, otherwise
Then, for all M € M(ITyy;),

=0, k=1,2,...,N—1 (4.3.16)

and

UN = [l(nﬂq) >0 (4.3.17)




Furthermore,

u[Mls,] =0, k=l,...,N—1,i=1,...(I:) (4.3.18)

and
ulM] = py (43.19)
]

It follows from (4.3.16-17) and our earlier discussion that the 1st, 2nd, ... (N-
1)st effects of uncertainty upon det(I + MA) are equal to sero. Furthermore,
stated in words, (4.3.18-19) imply that a system whose interconnection matrix
satisfies (4.3.15) cannot be destabilised by any combination of fewer than all N
uncertainties.

Proof: It follows easily from (4.3.15) and the definition of the u,’s that (4.3.16-
17) are satisfled. It is also straightforward to verify that (4.3.18) holds. From
Proposition 4.3.8, we see that

1+ @)
= 14+ M My, - Mi,i,606 - §

det[I + MA]

Selecting the z;'s and y's so that M, = 8[M,,4,),..., My, = 8[M;,,,] and
setting & = (u(llyy))¥", § = 1,...,N — 1 and &y = —(u(lyys))/N yields
det[] + MA] = 0. Hence u[M] > u(Ilyy). But it is easy to verify that if
max; |&| < 1/u(Ini;), then det[T + MA] # 0. Hence (4.3.19) is satisfied.




4.4 Bounds on the Structured Singular Value

In this section we derive bounds upon the structured singular value defined in
(4.2.2). We first note that most algorithms (e.g., [FaT86], [FaT88|, [Hel88]) for
computing the structured singular value actually compute the upper bound in
(4.2.5), which Doyle [Doy82] has conjectrized is within 15% of the true value of
4| M). Hence, instead we derive bounds upon the quantity infpep (DM D™!] and
argue that the qualitative information furnished by these bounds remain useful
in our methodology.

Proposition 4.4.1 Suppose that the infimum in (4.£.5) is achieved. Then,
jnf 3[DMD™]| > maz {pr, 43, s tin } (4.4.1)

Proof: First note that infpep S([DMD ] = G[DM D] for some D = diag|d;I,,, dsl,,,

-+, dy1n,] € D, if the infimum is achieved. It then follows that inf pep 2[ DM DY >
(d,'/dj)d’,',', Vl, j. Hence

&
(%G[DMD_”) 2 (d"/ di,)0iiy * (di/ diy)0igiy (du/ d‘x)a‘sﬁ
= ph(Ij)
VIIyi; € Pi. This completes the proof.
=

We note that this proof technique consists of finding a lower bound upon the
quantity infpep 8[ DM DY}, and thus results in lower bounds upon the structured
singular value for the case of N < 3 (cf. Chapter 2). It follows t".at these lower
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bounds can be used in analyzing the effects of any two or three uncertainties in
the structured singular value problem for N > 3. Specifically,

“[M] 2 maz {“1: “’!“‘} (4'4'2)

Alternately, one can also use (4.2.6) to derive lower bounds upon the structured
singular value, as done in [Fre89a] for the case N = 2. However, the bounds ob-
tained in this way are sometimes complicated and thus may obscure information
we desire from the interaction parameters.

Proposition 4.4.2 Suppose uy > 0. Then

N ]
piM]<un 3 (ﬁ'-) (4.4.3)
=1 BN
Furthermore, if uy/un < 1, Vk, then
N
uM| <Y m (4.4.4)
=1
Proof: See Appendix C.
]

Proposition 4.4.2 provides an upper bound useful in the case that the most
significant effects are due to the interaction of all N uncertainties, i.e., ) <
un, Vk =1,2,---, N — 1. Bounds useful in other cases may also be derived by
following a procedure suggested in Chapter 2. Note, however, that the bounds
obtained in such cases may involve significant compl:xity, especially when the
number of uncertainties is large. To summarise, it follows from these lower and
upper bounds that large values of the interaction parameters can lead to a large
structured singular value, and thus robustness problems. This, indeed, is consis-
tent with our analysis in the preceding section. Consequently, the bounds derived
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in this section along with the analysis in the preceding section do show that the
interaction parameters can qualitatively characterize robustness properties. A
useful application is to analyze these parameters to gain design insights into a
given problem, as in [Fre89a], [ChF89a], and [ChF89b]. In applying this method-
ology, it is significant to note that the blocks M;; of the interconnection matrix
will be mutually interrelated, and, as in the cited references, it is important to
analyze this interrelation to obtain design insights.

4.5 An Analysis Example

We now illustrate our analysis procedure by studying a three-block structured
singular value problem. Consider the linear time-invariant feedback system de-
picted in Figure 3.1. The transfer functions P(s) and F(s) are those of the plant
model and compensator, respectively. We shall assume® that the plant is square,
and that detP(s) # 0. The signals r(s), d(s), and y(s) are the reference input,
disturbance input, and system output, respectively. Define the input open loop

transfer function, sensitivity function, and complementary sensitivity function:
Ly(s) = F(s)P(s), Si(s) = [I + Ls(s)]"}, Ty(s) = Ly(s)[I + Ls(s)]"! (4.5.1)

and the output open loop transfer function, sensitivity function, and complemen-

tary sensitivity function:

Lo(s) = P(s)F(s), So(s) = [I + Lo(8)]™, To(s) = Lo(8)[I + Lo(s)]™ (4.5.2)

30ur results extend to nonsquare plants that satisfy the relevant assumption of left or right
invertibility.
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We consider a benchmark robust performance problem studied in [Fre89al,
[Fre89b], (SMD88] and [Ste87] with an additional source of modelling error which
we take to be an unstructured additive uncertainty. As discussed in [DWS82],
such a performance robustness problem can be treated as an equivalent robust
stability problem against the actual sources of plant uncertainty plus an addi-
tional source of fictitious uncertainty used to represent the performance spec-
ification. In this regard, the present problem is equivalent to the problem of
maintaining stability robust against plant uncertainty in the form of

Py(8) = [I + ry(s)As(8)]"2[P(s) + rs(s)As(s)][I + ri(s)As(s)] (4.5.3)

which corresponds to the block diagram depicted in Figure 4.1. Here r(s),
i = 1,2,3, are stable, minimum phase scalar weighting functions used to de-
scribe how the uncertainties and performance requirement vary with frequency,
and A;(s), s = 1,2,3 are unstructured uncertainties which satisfy ||A;|lec < 7.
Note that A,(s) and A,(s) are actual sources of plant uncertainty, while A4(s)
is the fictitious uncertainty used to represent the performance specification. Our
nominal performance goal will be achieved if the output sensitivity function sat-

isfies a frequency dependent bound

lIraSolles < 1/~ (4.5.4)

and the robust performance goal will be satisfied if VA,, As, [|Aill < 75
”A3”°° <1,
lirsSolle < 1/7 (4.5.5)

with S = [I + P'F|™! and P' = [P + r3Ag)[I + r14]
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Figure 4.1: Feedback System with Three Modelling Uncertainties
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We shall now discuss the stability robustness problem in detail. For purposes
~ of illustration, we shall mainly demonstrate this procedure which centers at an-
alysing the interaction parameters; a complete derivation of design insights for
this robust performance problem is found in [ChF89b).

We now formulate this stability robustness problem as a three-block struc-
tured singular value problem. Our first task is to find the corresponding inter-
connection matrix. Manipulating the block diagram in Figure 4.1 yields

nT; —";T]P-l r TP}
M= | —r3SoP r3So0 —r3So (4.5.6)
—r3Sy ~—rsTiP -1 rsT P -1

Next, we need to identify the interaction parameters defined in (4.3.2-3), and for

convenience we shall adopt the ordering of these parameters given as in Example

432 1 = maz {2[rTy], 2{rsSo), 2|rsTrPY|}
M(ngu) = VO[?,SoP]JI";T[P"‘]
“(ng) = V [ 4 [fsS]]O ["1T1P _1]
“(n”l.) = Va [ijo]U’[fsTlp"l]
#(Tsr) = (2]r1T1P~2|2(r3S0)0[rsS1])"/2
p(Ts1s) = (8[rsTrP~2|8|rsSo P)o|rs Ty P-])"/?

(4.5.7)

We first analyze the effects that are due to each individual uncertainty. Note
that if the feedback system is nominally stable, then it will be robustly stable
against A, alone if and only if ||r,T}|le < 1/ [DoS81]. Similar statements apply
to A; and ||r3So||co, and to As and ||rsT;P~}||eo. Hence u; summarizes stability
robustness with respect to each of the three uncertainty sources individually.

Next, we analyze the effects of uncertainties taken two at a time. The effect
of interactions between A; and A, is quantified by u[M]|,,,] and has been studied
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in [Fre89a), [Fre89b). Applying the bound (4.4.2-3) for N = 2 to this problem, it
follows that the parameter ;(Il3;;) determines the extent to which these two un-
certainties can interact to cause stability robustness difficulties even if the system
is robustly stable against A; and A, individually. To prevent this undesirable
effect imposes a nontrivial problem, for merely requiring (r,T;] and &{r;So] to
be small does not imply that ;(I3;) is also small. To this point, let the plant
condition number [GoV83| be defined by x[P(jw)] = 8[P(jw)]/e[P(jw)].

Proposition 4.5.1 [Fre89a] Let u(Ily;;) be defined in (4.5.7). Then, at each

frequency,

#(Ma1s) < \/&[P] - /31 T1|2[rs o) (4.5.8)

Since the bound (4.5.8) may be tight [Fre89a, it follows that stability robustness
against A; and A; together is potentially much worse than that against each
of these two indiwidually at frequencies for which the plant is ill-conditioned
(<[ P] > 1). It was shown in [Fre89a], [Fre89b] that requiring u(Il3;1) to be small
imposes more stringent constraints upon the closed-loop transfer functions than
those that are due to the stability robustness requirements with respect to A, or
A; alone (i.e., ||r1Tr||lec < 1/7, |IrsSolle < 1/, respectively).

Similarly, we analyse the combined effects of uncertainties Ay and A,.
Proposition 4.5.3 Let u(Ilyy;), 1 be defined in (4.5.7). Then, at each fre-
quency,

B(M|s,] < 2m (4.5.9)




Proof: By definition,

#(Tlsss) = \/2[raSolo[rsTrP-1] < \ud
The proof now follows from (4.4.3) for N = 2.

Hence, Proposition 4.5.2 reveals that, unlike the problem of maintaining sta-
bility robustness with respect to A; and A,, a feedback design which is robust
against A; and A; alone will tend to be robust with respect to these two uncer-
tainties taken together, independent of the sise of the plant condition number.

Lastly, we consider the combined effects of uncertainties A; and A,.
Proposition 4.5.8 Let u(Ils;), 41 be defined in (4.5.7). Then, at each fre-

quency,
B(Man) < (| r1 | +m1) (4.5.10)

#(Tlany) 2> \/2[rsTyP-Y] (| 1 | -2IniT}]) (4.5.11)

Proof: It follows from definition that

() = \/5['17'11’"]0['331]
= ﬁ[r.T,P“]O[r;(I + Tl)]

The proof is now completed by applying the triangle inequality.
[

The bounds in (4.5.10-11) exhibit that stability robustness with respect to
A; and A, together is potentially much worse than that with respect to either of
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these uncertainties alone at any frequency for which | r1(jw) | 1/7. As shown
in [ChF89b], maintaining x(IT33;) small at such a frequency imposes a more
stringent constraint than what is necessary for achieving stability robustness
against A; alone (|[rsTyP~}||c < 1/v). However, it was shown in [ChF89Db that
the two parameters u(Il3;) and p(Il3;;) are interrelated in such a way that
keeping both of them small at such a frequency imposes simslar requirements
upon the closed-loop transfer functions, and thus maintaining x(IT31;) small is
also useful for keeping 4(Il3y;) small. Hence, achieving stability robustness with
respect to A; and A; together also tends to guarantee a certain smaller level of
stability robustness with respect to the combined effects of A; and A;.

Finally, we need to consider the simultaneous effects of all three uncertainties.
Recall that these effects are determined by the parameters u(Ils;;) and u(Ils1a).
Fortunately, for this particular problem, requiring 4; and us to be small forces
3 to be small as well.

Proposition 4.5.4 Let u1, pa, and us be defined in (4.3.8). Then, at each
frequency,
ps <maz {1, i} (45.12)

u
Proof: First, it is straightforward to show
u(Is13) < maz {py, pa}
since
1/s

M(ngu) = (0['1T1P_1lalng[P—l]O[fgsoP])




) 1/3

(w*(Tan)2[rs Ty ']

< (Il; . #1) b

Next, following the same line establishes

b(Msyy) < maz {p1, 42}

since

p(lay) = (srTiP~lraSHolrsSo])"”"

(1 (Man)olraSol) *
)"

(4

IA

[

We now close this section by summing up the analysis procedure demon-
strated as above. Essentially, we decompose a complicated robust performance
problem into a sequence of more tractable problems in which we analyse the
interaction parameters. An important step of this method is to study interrela-
tions that exist among all interaction parameters and thus to obtain information
useful for purposes of design. For a particular robustness problem, interrelations
between blocks of the interconnection matrix do allow us to draw significant in-
sights into the problem. Finally, we note that the analysis in this section also
echoes Example 4.3.5 in showing why keeping interaction parameters of order < &
small is not in general necessary for keeping the kth order effects of uncertainties
small.




4.6 Concluding Remarks

We have developed an analysis method for analysing robustness problems asso-
ciated with multiple sources of modelling error. We used Mason’s gain rule to
identify a set of interaction parameters which were shown to capture the essen-
tials of such problems. These parameters were further used to derive bounds
upon the structured singular value and their importance was manifested through
analyses of certain extreme cases. The analysis methodology we propose is to
decompose a robustness problem into a sequence of problems in which we ana-
lyze the interaction parameters. An important step of this method is to study
interrelations among all interaction parameters and thus draw insights useful in
design. A benchmark robust performance problem was analysed to illustrate this
method.
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Chapter 5

Achieving Robust Performance
via H®/H? Mixed Sensitivity
Optimization

8.1 Introduction

In this chapter we shall consider the robust performance problem of achiev-
ing good command following (equivalently, small output sensitivity) despite un-
structured multiplicative uncertainty at the plant input. This is a difficult design
problem, because achieving robust performance requires that feedback properties
at both plant input and output be manipulated simultaneously. This precludes
the naive use of multivariable loop-shaping techniques as well as of synthesis
techniques such as H?/H* mixed sensitivity optimisation. The goal of robust
performance may be translated into one of minimising the structured singular
value (SSV) [Doy85]. However, direct minimisation of the SSV is still an exper-
imental procedure, with many difficulties remaining to be resolved [DLP86].

In [Fre89a], [Fre80b], and [Fre90], a multivariable loop-shaping approach to
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this problem was presented, based upon an earlier version of the bounds derived
in Chapter 2. The approach taken was to analyze the interrelations among
the blocks of the interconnection matrix to obtain guidelines for compensation
selection. In this chapter we shall adopt an alternate approach, and analyze
the bounds to obtain guidelines for selecting weighting functions to be used in
H?/H*™ mixed sensitivity optimization. These weighting functions will depend
upon the original weighting functions used to represent design specifications in
the robust performance problem, as well as the directional properties of the plant.
We shall show that minimising the H? or H® norm of the mixed sensitivity
function with these new weightings will lend to minimise the sige of the structured
singular value for the original robust performance problem. Results summarigzed
in this chapter appear in [LoF88], [LoF89a], [LoF89b].

5.2 Simultaneous Uncertainty and Robust Per-
formance Problems

In this section we review relevant results from [Fre89a] and [Fre89b]. The math-
ematical problem we study has two distinct physical interpretations, either as
a stmultaneous uncertainty problem or as a robust performance problem. In
the former, we ask that the system be robustly stable against modelling errors
occurring at two points in the feedback loop. In the latter we ask that a perfor-
mance property defined at one point be robust against uncertainty occurring at
the other. Both interpretations are useful in guiding and explaining subsequent

developments.
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Our first task is to define several important transfer functions. Consider
the linear time-invariant feedback system pictured in Figure 5.1. The transfer
functions P(s) and K(s) are those of the plant model and compensator,
respectively. We shall assume! that the plant has n inputs and outputs, and that
det P(s) # O. The signals r(s), e(s), and y(s) are the reference input, error
signal, and system output, respectively. Properties of this system are governed
by two sets of transfer functions. Breaking the loop at the plant input yields
the input open-loop transfer function, sensitivity function, and complementary

sensitiuity function

Li(s) £ K(s)P(s), Si(s) £ (I + Li(a)]™, Ti(o) L Li(s) [T+ Le(s)]™* (5:2.1)

Breaking the loop at the plant output yields the output open loop transfer fune-

tion, sensitinty function, and complementary sensitivity function

Lo(s) £ P(s) K(s), So(s) & [I+Lo(s)]™, To(s) £ Lo(s)[I+Lo(s)]™ (5.2.2)

We shall suppose that the true plant differs from the model due to uncertainty
that is present simultaneously at the plant input and plant output. Specifically,
we suppose that

P'(8) = [T + ra(8)As(s)]~* P(s)[I + r1(s)As(s)] (5.2.3)

A block diagram of the associated feedback system is in Figure §.2. The transfer

functions A;(s) and As(s) used to model system uncertainty will be referred to

10ur results extend to nonsquare plants that satisfy the relevant assumption of left or right
invertibility.
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Figure 5.1: Block Diagram of Feedback System
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Figure §.2: Block Diagram With Uncertainty
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as input and output perturbations, respectively, and are assumed to be stable
and proper. In general, the size of each uncertainty will vary with frequency.
This property is modelled by using the weighting functions r;(s). With no loas
of generality, these functions are assumed to be stable and minimum phase,
although they may be improper [DWS82]. The sources of each uncertainty are

now described.

Uncertainty of the form

Py(s) £ P(s) [I+ri(s)A1(8)] (5.2.4)

is termed multiplicative snput uncertainty. It typically arises because of unmod-
elled actuator dynamics or high frequency plant modelling errors. Suppose that
the feedback system is nominally stable and that the perturbation A; may be any
stable transfer function satisfying the upper bound &[{A;(jw)] < 4, Vw. Then the
system will be robustly stable if and only if the input complementary sensitivity
function satisfies the bound [DWS82]:

ar(jw)Ti(jw)) < 1/y, Yw (5.2.5)
Hence &[r;(jw)T;(jw)] is inversely proportional to a frequency dependent stabil-
ity margin against uncertainty (5.2.4)
Uncertainty of the form

Py(8) 2 [T + rs(s) Ag(s)] 2 P(s) (5.2.6)

is termed divisive output uncertainty. Its presence may be due to modelling

errors at the plant output. For our purposes, however, it is used to represent a
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performance specification such as an upper bound upon the response of the error
signal to the reference signal shown in Figure 5.1 [DWS82]. Suppose that the
feedback system is nominally stable aud that the nerturbatica A; may be any
stable transfer function satisfying the upper bound 2[A;(jw)] < 4, Vw. Then
the system will be robustly stable if and only if the output sensitivity function
satisfies the bound [DWS82]:

2lrs(jw)So(jw) < 1/v, Vw (6.2.7)

Hence &[r;(jw)So(jw)] is inversely proportional to a frequency dependent sta-
bility margin against uncertainty (5.2.6). Alternately, if the output uncertainty
arises from an attempt to represent a performance goal, we say that the goal of
nominal command following is satisfied if (5.2.7) holds.

Testing for robust performance requires use of the structured singular value
[DWS82]. Rearranging the block diagram in Figure 5.2 into the form shown in
Figure 2.1, we have?

_ T - T;P -1
M= [ —1ySoP rsSo (5.2.8)
and
A= dil([Al, A’] (5.2.9)

Defining the structured singular value as in Section 2.2, we have that 3[r,So] <
1/7, VA, such that 3[A;} < « if and only if u[M] < 1/7. Hence the design
goal of achieving robust performance can be translated into one of minimising

2As usual, we suppress dependence on frequency where convenient.
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oo 2 sup,, u{M(jw)]. We shall approach this problem by analysing the bounds
upon the structured singular value presented in Chapter 2.

Lemma 5.2.1: With M and A defined by (5.2.8-9), the structured singular
value satisfies the bounds

. 0['11‘1 ]: 0['250] ’
#[m 2 max . (5.2.10)
N

and

s[M] < +fo[riTP-1|8]rsSoP] (5.2.11)

+ max{2{r,T}], 2[rsSo]}

-
It follows from Corollary 5.2.1 that if
3[r1T1P|8[rsSo P| > max{3[r,T}},[rsSo]}
and
3[ri TP }2[rsSoP] > 1 (5.2.12)

then performance robustness will be poor even if nominal performance and robust
stability are satisfactory. Hence it is desirable to know how a compensator should
be selected to prevent (5.2.12) from being satisfied. We approach this problem
by deriving a set of upper and lower bounds that are analogous to (5.2.10-11) and
that display the plant directionality properties. For simplicity of exposition, we
shall restrict our discussion to systems with two inputs and outputs. Extensions
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to n inputs and outputs are available. The following results are similar in spirit
to those of Section 2, [Fre89b).

Dencte the piant singvlar value decompoeiticn by

P = WrZ¥
fjwm' % (5.2.13)

=1

where T = diag[n, 7] contains the singular values with usual ordering, the
columns of W = [w w;] are the left singular vectors, and those of Z = [£;)]
are the right singular vectors. Define the coupling coefficients

B(k,1) = |riralllSowsl| - | Teml| (5.2.14)

The following result follows similarly to Theorem 2.2 of [Fre8ob).

Theorem 5.2.2: For each pair of plant singular values, the structured singular

value satisfies
al'lTI]ao['SSO] ’
p|M] > max (5.2.15)

VE(K,1) - (n/n)

Suppose that we desire the structured singular value to satisfy y,, < 1. Then
each lower bound implied by (5,2.15) corresponds to a necessary condition for
robustness. By deriving upper bounds upon the structured singular value, it is
also possible to state sufficient conditions in terms of the coupling coefficients.

Theorem 5.2.8: For each pair of plant singular values, the structured singular




value must satisfy

w0 < (St o 20TH) o2

b=1i=1

(]
A tighter upper bound may be obtained if an additional orthogonality con-
dition is satisfied.

Corollary 5.3.4: Suppose that

(i) SowslSow; , k#1

(i) TreaalTrs , k#1 (5.2.17)

Then
M) < qﬁx\/a(k,l)(f,,/n) + max { :{::g’]] } (5.2.18)

Together, Theorems 5.2.2-3 and Corollary 5.2.4 show that requiring each cou-
pling coefficient to be suitably small tends to insure that performance robustness
will be satisfactory provided that the bounds 2[r Ty} < 1 and 3[rsSo] < 1 are
satisfied.

Note first that each coupling coefficient is the product of the weightings and
two terms that are each the gain of a closed-loop transfer function in a particular
direction. It follows that the weighted condstion number

% |P] £ |rirs - [P] (5.2.19)
is a particularly relevant parameter of the design problem. At frequencies for
which (5.2.19) is large, it is necessary that the semsitivity and complementary




sensitivity functions be shaped carefully to pievent the structured singular value
from becoming large. This imposes constraints upon the open-loop singular
values.

Lemma 6.2.5: For each pair of singular values, the coupling coefficients are
bounded above and below by

Irirafg{Lol/|1 - glLo]* > B(k,}) 2 rinilo[Lo]/(1+3]Lo]))*  (5.2:20)
IrirsfoLa)/11 - g[Le]|* 2 B(k,1) 2 InnalelLd/( +3(Ld)*  (5221)

It also follows from the preceding theorems that the closed loop transfer func-
tions must satisfy certain directionality properties. One approach to achieving
these properties is to translate the closed-loop properties into specifications upon
the open loop transfer function. This is explored in [Fre89b] and [Fre90]. In the
following section we shall pursue an alternate approach.

5.3 Robust Performance via Mixed Sensitivity
Optimization

We saw in the preceding section that the goal of robust performance may be
translated into one of manipulating the sise of the coupling coefficients. In this
section we shall show how this may be done using H?/H® mixed sensitivity
optimisation techniques. For simplicity of exposition, we shall consider only
systems with two inputs and two outputs. In this case, Theorem 6.2.2 reduces
as follows.
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Corollary 5.3.1: Necessary® conditions for achieving

uM] <1 (6.3.1)
are that

M{a [rlT,], J [T’So]} <1 (5.3.2)

lIrs T2l - lIrsSowsi(x) < 1 (5.3.3)

llP1Tr21] - l|lraSowsl|(1/5) < 1 (5.3.4)

||r1nglﬂ . "f,Song" <l1 (5.3.5)

lirsTrzal| - lirsSowsl| < 1 (5.3.8)

[ ]

Note first that if (5.3.2) is satisfied, then the only one of conditions (5.3.3-6)
remaining of interest is (5.3.3)

We now briefly review the mixed sensitivity minimisation problem. Consider
the system depicted in Figure 5.3. The transfer function from the disturbance d
to the weighted control signal y;, and system output y;, is given by

ns) | _
[h(‘) = G(s)d(s)

where

— | ~Wi(s)P(e)To(s)Wa(s)
G(‘) = [ W, ( ‘) So ( O)W:( ‘) ¢ (5.3.7)

SRecall that Theorem 8.3.2 and Corollary 5.3.4 imply that making (5.3.2-6) amall also tends
to insure that (5.3.1) is satisfied.




(8

W, ()

d(s)

W, (s)

— K (s) J——o

P(s)

W, (8)

Figure 5.3: Block Diagram for the Mixed Sensitivity Problem
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The weighting functions W;,W,, and W, are assumed to be stable and minimum
phase. We shall refer to (5.3.7) as the weighted mixed sensitivity function. Define

the H*® mixed sensitivity problem as that of minimizing

IGlieo = sup2{G(sw)] (5.3.8)

over all internally stabilising controllers. Similarly, we may define the H? mixed
sensitivity problem as that of minimising

161 = [ [ teace P (sG] (539

over all internally stabilising controllers. Computationally tractable solutions
to these problems using state-space techniques have recently become available
[DGKs9].

We shall now show how to pick weighting functions so that minimising (5.3.8)
tends to minize u,,. Modifications of this procedure to the problem of minimising
(5.3.9) are found in [LoF89b).

Theorem 5.8.2: Consider M(s) and G(s) defined by (5.2.8) and (5.3.7), respec-
tively, and evaluated at a fixed frequency. Assume that the weightings in (5.3.7)

are given by
Wy=W [ ‘; (1) ] (5.3.10)
W1 =nrin(s/a)l (5.3.11)
and
Wg = r,I (5.3.12)




where W is the matrix of plant left singular vectors (5.2.18), r; and r; are the
weighting functions in (5.2.4) and (5.2.6), ry is the smaller plant singular value,
x is the plant condition number, and x > |a| > 1. Suppose that

2[G] <1 (5.3.13)

Then (5.3.2-6) are satisfied.

Proof: Define G; = —W,; P-'ToW, and Gy = W3SoW,. It is well-known that

2(G] > max2|G} (5.3.14)
and, for any unit vector z,
2(G] 2 (|G| (5.8.15)
Notice that
G, =-nTiZ [ ; n‘/’a ] (5.3.18)

Since £/|a| > 1 by construction, and since Z is unitary, we have from (5.3.14-15)

3(G] 2 2[r\ T} (5.3.17)
and, with ¢; = [0 1]7,
2[G] 2 [Giesl
= |InTim(x/a)| (5.8.18)
Similarly,
Gs = rySoW [: ‘1’] (5.3.19)




which implies that .
2(G] > 3|rsSo| (6.3.20)

and

2[G) 2 ||\rsSows || (6.3.21)

From (5.3.17) and (5.3.20), it follows that (5.3.13) implies (5.3.2) and thus also
(5.3.4-6). Finally, (5.3.13), (5.3.18), and (5.3.21) taken together imply (5.3.3).

Although these are not aufficient conditions, the upper bounds in Theorem
5.2.3 suggest that minimising ||G||. also tends to make o, itself small, and this

conjecture appears to be borne out by our design examples.

We now discuss how weighting functions with the properties (5.3.10-12) may
be constructed. First, it may not be possible to find a rational matrix Wy(s) so
that (5.3.10) holds, because the singular vectors need not be complex analytic
and thus need not have frequency responses equal to those of rational transfer
functions. However, these vectors can often be approximated sufficiently closely
for our purposes by rational functions. (On the other hand, tke smallest singu-
lar value r; and the condition number x can always be approximated arbitrarily
closely by the gain of a stable, rational, mirimum phase transfer function.) Fi-
nally, we need to select a rational transfer function a(s). To do this we suppose
that, as is typical, the weighting functions r; and r; have the general shape shown
in Figure 5.4. Let us now investigate the implications of requiring (5.3.2) to hold
at a frequency for which |ri(jw)| > 1 or |ry(jw)| > 1.
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Figure 5.4: Typical Weighting Functions




Lemma 5.8.3: (a) Suppose that 3{rsSo] < 1 and that [r;| > 1. Then

lirsTrzal s |4 (5.3.22)

(b) Suppose that 3{r,T7] <1 and that [r1| > 1. Then

"r:SaW;" N |f3| (5.3.23)

It follows that if we wish to satisfy (5.3.2) and (5.3.3) at low frequencies, for
which |rs| > 1, then we should require that ||rySowix|| < 1. Hence we should
have |a| & ~ at low frequencies. Similar considerations show that we should
require |a| = 1 at high frequencies. Hence we shall select a function a(s) whose

gain decreases from |a| = & to |a] = 1.

Of course, the weightings described above may need iteration before a satis-
factory design is obtained.

Finally, we state dual results that shall prove useful in our example. To do
this, define the mixed sensitivity function

—Wi(s)Ty(s)Wa(s)

G(o) = | w,(s)P(6)Si(e)Wulo)

(5.3.24)

corresponding to the block diagram in Figure 5.5.

Theorem 5.8.4: Consider M(s) and G(s) defined by (5.2.8) and (5.3.24), re-
spectively, and evaluated at a fixed frequency. Assume that the weightings in
(5.3.24) are given by

(5.3.25)
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Figure 5.5: Block Diagram for Alternate Mixed Sensitivity Problem
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Wl = f;I (5.3.26)
W, = (fj/ ﬂf,)I (5.3.27)

where Z is the matrix of plant right singular vectors (5.2.13), r; and r; are the
weighting functions in (5.2.4) and (5.2.6), r; is the smaller plant singular value,
x is the plant condition number, and x > |8| > 1. Suppose that

2(G] <1 (5.3.28)
Then (5.3.2-6) are satisfied. [
Proof: Similar to that of Theorem 5.3.2. [}

The transfer function f(s) should increase from 1 at low frequencies to « at
high frequencies.

5.4 Design Example Using H*® Mixed Sensitiv-
ity

We now apply the procedure developed in the preceding section to the problem
of designing a robust performance longitudinal control system for a highly ma-
neuverable aircraft. This example was originally proposed by Stein [Ste84]. The
aircraft characteristics and linearised models are discussed in detail in [HBG79).
The aircraft possesses two sets of longitudinal control surfaces: elevators and
canards. There are two available measurements: angle of attack and pitch rate.
For our discussion, we use the linearised model of the longitudinal dynamics at




Mach 0.9, altitude 25,000 ft:

£ = Az+ Bu
y = Cz
where
[ -.0226 —366 -18.9 -—32.1
4 < 0 -19 -988 0
— | 0123 -117 -263 O
L0 6 10 ©
o o0
-414 0
B = | _ms 24
0o -0
C = [0 573 0 O
- (0o o o 573

(5.4.1)

The plant model in this flight condition is stable and minimum phase. The
singular values of the plant are shown in Figure 5.6. Since the plant condition
number is equal to the ratio of the larger to smaller singular values, we see
from Figure 5.6 that the condition number is large at almost all frequencies.
The physical source for the large condition number is the ability of the control
surfaces to impart relatively large amounts of rotational energy to the aircraft,
combined with an inability to transmit relatively large amounts of kinetic energy
to the aircraft. These facts imply that the transfer function from inputs to pitch
rate has larger gain than that from inputs to vertical velocity, or angle of attack.

The weighting function for robust stability (5.2.4) is
ri(s) = ;(.013 +1)
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Figure 5.6: Plant Singular Values
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while that for tracking performance is

=3 (428) e

Bode plota of these weighting functions appear in Figure 5.7, and a Bode plot of
the weighted condition number (5.2.19) is in Figure 5.8. As shown by [Ste84],
the optimal value of u[M] for this design is u[M(j)w] =1, Vw.

We shall initially use weighting obtained by appraximating those given in
Theorem 5.3.4, and then iterating to achieve a final satisfactory design:

1 0 98 -2 10
Wale) = [ 0 .002s+1 ] [ ~25 —.25 ] [ 0 | - (5.44)
Wi(s) = ry(s)I (5.4.5)
Ws(s) = (1/3.756)rs(s)1 . (5.4.6)

The constant factor in (5.4.6) arises from a crude low frequency appraximation
to the function §(s)r3(s). The structured singular value resulting from these
weightings is plotted in Figure 5.9. The key features of this plot are the two
peaks, one in the crossover region and one at high frequencies that may be
reduced by penalising the control signal y; more heavily by adding a lead filter

to Wl:

Wi(s) = 2.5 (:::&) ri(e)1 (5.4.7)

while leaving the other design weights unchanged. The structured singular value
of the second design (Figure 5.10) has a single large peak in the crossover region.
This may be reduced by using a better approximation to the function S(s)rs(s).
Such an approximation requires that we introduce a lead filter into (5.4.6):
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Wi(s) = (‘ :_;',:56) ra(e)I (5.4.8)

The structured singular value for the third design, using (5.4.4), (5.4.7), and
(5.4.8) is shown in Figure 5.11. Note that this plot is within 10% of the desired
value, and of the optimal value obtained in [Ste84). If desired, one could reduce
this peak further through additional applications of the techniques developed
in this chapter. The resulting changes in the compensator will only be minor,
however, and are likely to be dominated by effects not incorporated into the

linearized design problem.
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Chapter 6

Design for IllI-Conditioned Plants
Using LQG/LTR Method

6.1 Introduction

Multivariable extensions of classical loop-shaping ideas have recently received
much attention [DoS81), (StA87), [SLH81], [HuM82]. The development of these
multivariable loop-shaping design methodologies was based upon the introduc-
tion of singular value analysis. Since the singular value tests used to analyse
stability robustness are applicable only to limited classes of plant uncertainty
[FLCB82], [Doy82|, [DWS82], these design methodologies are most successful only
when the design specifications can be precisely formulated in terms of loop trans-
fer functions at one loop breaking point or when the plant has uniform gain in
all loops.

Owing to the coupling and the directionality, feedback properties of a multi-
variable system such aa stability margin and sensitivity must be evaluated at more
than one loop-breaking point, e.g., at the plant input and plant output. When the
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plant transfer function, evaluated at frequencies of interest, is an ill-conditioned
matrix, it can happen that nominal properties at one loop-breaking point are un-
acceptable even though properties at the other are good. It can also happen that
nominal properties at one loop-breaking point are extremely sensitive to uncer-
tainty elsewhere [Fre89a], [Fre89b], [NeM87]|, [SMD88], [Ste85]. Hence, when the
plant is ill-conditioned, and when the uncertainties are present simultaneously at
different points in the feedback loop, multivariable loop-shaping techniques such
as LQG/LTR [StA87] may fail to yield a robust design [Ste84], [Ste85].

Recently, some progress has been made in analyzing how to shape the loop-
transfer functions at one loop breaking point to satisfy the design goals for-
mulated in terms of loop transfer functions at different loop breaking points
{Fre90] It is shown that the difference between feedback properties at different
loop breaking points is closely related to the singular subspace structures of the
loop-transfer functions and the plant. These analyses yield conditions that must
be satisfied by feedback properties at one loop-breaking point to prevent poor
feedback properties at the other or to be robust against uncertainty at the other.
It turns out that, to satisfy the design goals, one has to manipulate both the sin-
gular values and the singular subspace structures of the loop-transfer functions.
However, to the best of our knowledge, no systematic synthesis procedures are
available to obtain cumpensators so that the resultant loops satisfy the loop
shaping conditions derived in [Fre90).

The main objective of this chapter is to try to develop such a synthesis pro-
cedure. We shall do so by incorporating design insights obtained in [Fre90] into
the shaping of the state feedback loop in the LQG/LTR design. We will show
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that by properly selecting weighting functions, the LQG/LTR methodology can
be an effective loop-shaping technique for ill-conditioned plants.

The rest of the chapter is organised as follows. In Section 6.2, we introduce
some notations and preliminaries and formulate the problem considered in this
chapter. In Section 6.3, a property of the Kalman equality is discussed which
reiates the right singular vectors of the return difference function of the state
feedback loop with those of the weighting function. In Section 6.4, procedures
for selecting weighting functions are suggested for the LQG/LTR target state
feedback loop design which ensure that the resultant LQG/LTR design has good
stability robustness against simultaneous uncertainties at the plant input and
output. Design examples are given in Section 6.5 to illustrate the procedures.

6.2 Preliminaries and Problem Formulations

Consider the linear time-invariant feedback system shown in Figure 6.1. P(s)
and F(s) denote the transfer functions of the plant model and the compensator,
respectively. We assume that P(s) is an m x m rational matrix and is invertible.
The signals u(s) and y(s) are the plant input and measured output, respec-
tively. Let the singular value decomposition of the plant model be denoted!
P = WTZH, whete T = diag|r;,r3,...,7m] contains the singular values with
usual ordering 2[P| =1, 2 13 > -+ > 1y = g[P], W = [wy,w;,...,wy] and
Z = [21,23,...,2m] are unitary matrices whose columns are the left and right

singular vectors, respectively. We shall use a boldface letter to denote the col-

1We suppress dependence upon frequency whenever appropriate.
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umn space generated by the matrix (or vector) denoted by the corresponding
uppercase (lowercase) letter. The condition number of the plant is defined as
k[P] := 8[P]/e|P]. If the condition number is very large at some frequency,
we say the plant is ill-conditioned at that frequency. The plant condition num-
ber is not invariant under scaling, or a change of units. Hence we must assume
throughout this chapter that physically meaningful units have been chosen. It
follows that, if a plant is ill-conditioned with respect to these units, then the
ill-conditioning cannot be removed simply by scaling.

For this system, the feedback system properties are governed by the following
two sets of transfer functions:

1. Input open-loop transfer function L;(s) := F(s)P(s)
Input sensitivity function Sy(s) := [I + Ly(s)]™?

Input complementary sensitivity function Ty(s) := Ly(s)[I + L(s)]™?

2. Output open-loop transfer function Lo(s) := P(s)F(s)
Output sensitivity functios. So(s) := [I + Lo(s)]™?

Output complementary sensitivity function To(s) := Lo(s)[I + Lo(s)]™2.

When all design specifications can be accurately formulated in terms of the trans-
fer functions at one loop breaking point, then multivariable loop-shaping design
methods (e.g., [StA87]) can be applied to manipulate the shape of the transfer
functions so that the design specifications are satisfied as well as possible. How-
ever, when design specifications are formulated in terms of transfer functions at
different loop breaking points, then the multivariable loop-shaping methods may
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Figure 6.1: Linear Feedback System
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not be so readily applicable. For the problem we consider in this chapter, the
design specifications have to be formulated in terms of transfer functions at dif-
ferent loop-breaking points. The following is the problem description. It is the
same as that discussed in Chapter 5, and is restated here for ease of discussion.

Suppose that the true plant is given by
P(3) = [I + ra(a) As(o)| P(8)[I + r1(8) As(s)] (6.2.1)
where the unstructured uncertainties A;,i = 1,2 lie in the set
D, := {A € C™™: A ia stable and 2[A] < 7} (62.2)

and the weighting functions r,(s) and ry(s) describe how the sise of each uncer-
tainty varies with frequency. A,(s) is called input uncertainty and is assumed to
arise from plant or actuator modelling errors. Az(s) is called output uncertainty.
It may arise either from modelling error or from the use of fictitious uncertainty
to represent an equivalent performance specification [DWS82]. Hence, the prob-
lem we are to consider next can be interpreted either as robust stability against
simultaneous plant input and output uncertainties or as robust performance at
the plant output against uncertainty at the plant input. Our goal is to find a
compensator F(s), for given design specifications r;(s) and ry(s), such that the
feedback system in Figure 6.1 is stable when the plant model P(s) is replaced
by the true plant P(s) described in (6.1) and (6.2), i.e., we would like to achieve
stability robustness against simultaneous input and output uncertainty. This
problem is equivalent to finding a compensator such that the structured singular
value satisfies

pM(jw)] < 1/4,Vw (6.2.3)
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where

_ T —r;T:P"l
M= [ s g ] (6.2.4)
and the structured singular value is defined at each frequency by 2
__f 0, if no A € Dy, exists with det|I + MA] =0
uM) = { 1/ min{2[A] : det|J + MA] = 0 and A € Dy}, otherwise, (53-%)

However, the structured singular value can only be used to judge our compensator
design and it does not give insights into how we should construct compensators
such that (6.2.3) is satisfied. To obtain such insights, bounds on the structured
singular value have been derived (see Chapters 2-4) in terms of the singular
values and vectors of the plant transfer functions together with the sensitivity
and complementary sensitivity functions used to perform singular value analysis.
Specifically, we have for M defined in (6.2.4) that

max{uy, us} < u{M] < p1+ pa (6.2.6)
where

B = m&x{’[r;T;],G[thl} (6.2.7)

pa = \|olraPS;o[r, TP (6.2.8)

Hence, to satisfy (6.2.3), it is necessary and sufficient to keep the parameters u,
and u3; small.

It is useful to decompose an ill-conditioned plant into higher and lower gain
subsystems at frequencies of interest. Hence we partition the plant singular value
decomposition as

P=W\T\Z + W,T,Z] - (6.2.9)
3For details about structured singular value, see [Doy82].
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where T) = diag[n,...,n],T3 = diag[n41,...,"wm), and W; and Z;,¢ = 1,2, are
partitons of W and Z of dimensions compatible with those of T; and T;. We
shall assume that 1 > n4;. In this case, it can happen that 4, is very large even
if 43 is small, which means that the system stability is much more sensitive to
simultaneous input and output uncertainties than to either uncertainty acting
alone [Fre89a]. Assume that the gain in each subsystem given by partition (6.9)
is uniform, i.e., 2{Ti] = ¢[Ti],§ = 1,2. Then it is shown [Fre90] that to prevent
p3 from being large, the compensator has to be chosen so that the closed-loop
transfer functions satisfy

2(Z85)8(T12) < 1 (6.2.10)

at frequencies for which the weighting product | ryrs | is large.

Hence, if we apply a multivariable loop-shaping design method at the plant
input and would like to have stability robustness against simultaneous input
and output uncertainties or robust performance at the plant output, we must
manipulate the loop shape to satisfy the condition (6.2.10) as well as possible in
addition to meeting the design specifications at the plant input.

6.3 Properties of the LQ Regulators

The LQG/LTR procedure consists of two basic steps. The first step is called the
target state feedback loop design. In this step a state feedback loop is designed
to meet all stability and performance requirements. The second step is called
the recovery procedure where an LQG/LTR compensator is designed to asymp-
totically recover the state feedback loop. The quality of recovery is governed by
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the nonminimum phase characteristics of the plant [ZhF90]. Hence, to find an
LQG/LTR compensator so that condition (6.2.10) is satisfied, it is necessary for
the target state feedback loop to satisfy condition (6.2.10). In the following we
shall re-examine some properties of the LQ regulators and use those properties
to guide us in the LQ weighting selection so that the resulting state feedback
loop satisfies condition (6.2.10).

Consider a state-space realization of the plant model P(s)
£(t) = Az(t) + Bu(t) (6.3.1)

y(t) = Cz(t) (6.3.2)
where z(t) € R™ is the state, u(t) € R™ is the control input, y(t) € R™ is
the measured output. It is assumed that (C, A) is observable and (A, B) is
controllable.

Suppose an LQ regulator is designed for the system. Hence the feedback law
is given by
u(t) = —K,z(t) (6.3.3)
where K, = R~'BT P, and P is the unique positive definite solution of the Riccati
equation

PA+ATP-PBR'B’P+HH=0 (6.3.4)

In equation (6.3.4) H is a design parameter and is chosen such that (H, A) is
observable and R > 0 is a given weighting matrix.

Denote the transfer function of the LQ-optimal state feedback loop by
L(s) 2 K,8(s)B , (6.3.5)
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where $(s) = (s — A)~!, and let the corresponding sesnitivity and complemen-
tary sensitivity functions be denoted by

S(s) = (I + L(s))™* (6.3.6)

and

T(s) = L(s){I + L(s)]? (6.3.7)
respectively. It is well known that L(s) satisfies the following Kalman equality:

(I + L(jw)|¥ RI + L(jw)] = R + [H&(jw) B [H®(jw)B) (6.3.8)

Define the transfer function from control inputs to weighted states by
Q(s) 2 H(sI - A)™'B (6.3.9)

By an abuse of terminology we shall call Q(s) a weighting function; our motiva-
tion for this nomenclature is that we shall shape properties of the optimal state
feedback loop (6.3.5) by manipulating @Q(s). Denote the singular values of the
matrix M € @™ by o;[M]; i =1,...,n.

Lemma 6.8.1: Suppose that R = pI in (6.3.8). Then
(y aill + L(jw)] = \/1+ (1/p)0}[Q(jw)] (6.3.10)

(ii) If u, is a right singular vector of Q(jw) associated with singular value o,[Q(jw)),
the u; is also a right singular vector of I + L(jw) associated with the singular
value oI + L(jw)).

Proof: Straightforward. m
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The first part of this lemma is well-known (e.g. [DoS81]) and has been used
extensively in multivariable loop-shaping via the LQG/LTR methodology. The
second part appears to be less well known. We shall use this result to shape the
right singular subspaces of the return difference function I + L(jw), and thus the
left singular subspaces of the sensitivity function (6.3.6).

Now suppose that the singular value decomposition of the weighting function
(6.3.9) may be separated into high- and low-gain parts dimensioned compatibly
with those of the plant (6.2.9):

H
Q=V,EU, = [V Va] [ Zu 2(:’] [Zg (6.3.11)

where I, = diag|oy,: - ,01], L3 = diag[oy41,° - ,0m], and Vi and Uy are parti-

tions of V; and U, whose dimension are compatible with those of ¥4 and Z.

Proposition 6.3.2: Assume that R = pl, and suppose that the weighting
function (6.3.11) satisfies

e[Zal/vp>1 (6.3.12)

and

Up=2i,§=1,2 (6.3.13)

Then the state feedback sensitivity function (6.3.6) satisfies
2{Z28s) « 1 (6.3.14)
.

Proof: 1t follows from (6.3.11) and Lemma 6.3.1 that the singular value de-
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composition of the return difference matrix can be written as
_ r, o]|f|2zf
I+L=[W V,][0 z:,][z}'] (6.3.15)

where £ = diag[\/1+ 61/, ...,\/1+ 0}/p], B2 = diagly/1 + o},1/p,...,\/1 + 6L /0],

and V = [ W Vs ] is a unitary matrix. Hence the singular value decomposition
of (6.3.6) is

S=(I+L)'=[% z,][“:gl 2‘;1][“:;:] (6.3.16)
The result follows from (6.3.12). |

Recall that the complementary sensitivity function of the LQ state feedback
loop must satisfy 2[T'(jw)] < 2, Vw (e.g. [DoS81]}). It follows from this fact and
(6.3.14) that if the plant is minimum phase so that the LTR procedure may be
successfully applied, then we can insure that (6.2.10) holds by requiring that
(6.3.12-13) hold.

It is not possible to require that (6.3.14) hold at all frequencies, because
this condition requires that some open-loop gains be large. In particular, it is
not possible for loop gains to be large at high frequencies. In such situations,
an alternate approach is to require that 3{T1Z;] < 1. (Recall that 2{S(jw)] <
1, Vw.) This may be accomplished, for a minimum phase weighting Q(s), by using
cheap state feedback control. The following result is well-known (e.g. [DoS81]).

Lemma 6.3.3: Let R = pI in (6.3.8), and suppose that Q(s) in (6.3.9) is
minimvm phase. Then as p — 0, the state feedback loop transfer function
satisfies, at each frequency,

L(jw) — (1/\/A)WQ(iw) (6.3.17)
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when W is a unitary matrix. [ |

This result shows that asymptotically the open-loop state feedback singular
values satisfy o;[L(jw)] = 0;(Q(sw)]/+/p and the right singular subspaces of L are
approximately equal to those of Q. Suppose that Q has the form (6.3.11), where
Uy = Z;,8 = 1,2, and 3[Zp(jw)]/{/p € 1. Then it follows from the results
of [FrL86], [Fre90] that the state feedback complementary sensitivity function
satisfies 3[T(jw)Z;] <« 1. Again, if the plant is minimum phase, we can apply
the LTR procedure so that the (6.2.10) holds.

Hence, by properly choosing the weighting Q(s) in the state feedback loop
design, the LQG/LTR procedure can be applied to achieve stability robustness

against simultaneous input and output uncertainties.

6.4 Weighting Selection in the LQG/LTR Pro-
cedure

We can see from previous discussions that one way to meet requirement (6.2.10)
in the LQG/LTR design is to choose the LQ weighting function Q(s) so that it
has the same spread in gains and the same corresponding right singular subspaces

as the plant.

It is clear that if we let H = C, then Q(s) = C(sI ~ A)~'B = P(s) and the
above requirements on Q(s) are trivially satisfied. This is the simplest way to
achieve the requirements. However, it restricts the loop shapes we can have at
the input loop-breaking point. To have more freedom in selecting the loop shape
at plant input, we have to augment proper dynamics to the plant.
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1. Dynamics Augmentation at the Plant Output

One way to augment the plant is to add extra dynamics at the plant output
(see Figure 6.2). In this case the augmented system can be described by

[;]=A.[L]+B,u,ﬁ=c.[:] (6.4.1)
where
A.=[ch :-],B.=[€],C’.=[O Ce | (6.4.2)

and W(s) := Cy(sI — A,)"'B,, is the dynamics we add to the plant. If we
select H = [0 C,), then the singular value and singular vector properties of the
resultant LQ feedback loop are essentially determined by the augmented plant.
This can be verified by writing down the Equation (6.3.8) for the augmented
system with the above weighting and using Lemma 6.3.1. We can see in this case
that Q(s) = H(sI — A,)"'B, = W(s)P(s). Hence, W (s) should be chosen such
that the product W (s)P(s) preserves the right singular subspace structure and
the spread in gains of the plant P(s) and such that W(s)P(s) has the desired
loop shape. The following are some suggestions in how to choose W (s).

(1) The plant P(s) is ill-conditioned at all frequencies, i.e., the partition (6.2.9)
holds at all frequencies. In this case, we may choose W{s) to be

W(s) = g(o)]

where g(s) is a stable minimum phase transfer function that can be used to
manipulate the loop shape at the plant input. If the matrix of plant left singular

vectors W can be well approximated by a constant real matrix, 2 say W, then

SWhen W varies sufficiently slowly with frequency, it can usually be well approximated by a
real matrix. Techniques of appraximating a complex matrix by a real matrix can be found in
[MaK77], [EdK79).
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Figure 6.2: Augmenting the Plant at the Output
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we may let W(s) be of the following form.

W (s) = diaglgy(s),93(8), - - . » gm(8)|WT

where scalar transfer functions g;(s), ¢ = 1,2,...,m, are selected to be stable and
minimum phase. They can be manipulated to achieve their desired loop shape.

(2) The plant P(s) is ill-conditioned only around some frequency wy, i.e., the
partition (6.2.9) holds only around frequency wy. A procedure to obtain the
desired augmenting dynamics is as follows:

(i) Compute the singular value decomposition of P(jwy) to obtain its left sin-
gular matrix W.

(ii) Approximating W by a real matrix W.

(iii) Select scalar transfer functions g;(s), s = 1,2,...,m, such that they are
stable and minimum phase. They can be manipulated to achieve the desired
loop shape at s = jwy.

(iv) Form the augmenting dynamics W (s) as follows
W (s) = diaglg:(s), 93(s), .- -, gm(8)]W
(v) Manipulate free parameters in g;(s) to achieve desired loop shape for W (s) P(s).

The weighting selection procedure will be repeated in the LQG/LTR design until
a satisfactory result is obtained.
2. Formal Loop Shaping
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This dynamics augmentation procedure is adopted from [StA87], [Enn84]
which makes it very easy to manipulate the loop shape at one loop breaking
point. Suppose that the plant is stable and the desired loop shape at the plant
input can be denoted by W(s) = Cy(sl — A,) 'B,. If the plant is augmented
as in Figure 6.3, then the state space representation of the augmented plant is
given by

A 0 B
A,.=[0 A, ,B.=[B.],C.=[C 0] (6.4.3)
The LQ optimal feedback gain for the augmented system is obtained by solving
the Riccati equation (6.3.4) with the weighting matrices being chosen as R = I

and H = [0 C,].

As we have shown in the previous sections, feedback properties of the re-
sultant state feedback system are basically determined by the weighting Q(s) =
H(sI—-A,)™'B, = Cy(8I—Ay)'B,. Note that by selecting different A, By, Cy,
we now have complete freedom in specifying the weighting function Q(s). To il-
lustrate how to select Q(s), we again consider the following two cases.

(1) The plant P(s) is ill-conditioned at all frequencies. In this case we may select

Q(s) = g9(s) P(e)

The scalar transfer function g(s) can be manipulated to obtain satisfactory loop
shape at the plant input. Such a selection trivially implies that high gain/low

gain structure of P is present in Q.

(2) The plant P(s) is ill-conditioned only around some frequency wo. In this
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Figure 6.3: Formal Loop Shaping
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case, an algorithm to obtain the desired weighting function is as follows:

(i) Compute the singular value decomposition of P(juwo) to obtain its right
singular matrix Z.
(ii) Approximate Z by a real matrix Z.
(iii) Select stable transfer functions g;(s), § = 1,2,...,m, so that | g(jw) |

resembles the desired loop shapes at the plant input, | gi(jw) |2| gs(yw) |,
if £ 2 k and | gi(swo) | / | rea(swo) I~ x[P(jwo)].

(iv) Form the weighting function Q(s) as follows
Q(s) = diaglgi(s),93(s), - .-, 9m ()1 27

Again, the weighting selection procedure will be repeated in the LQG/LTR de-
sign until a satisfactory result is obtained. Comparing with the output dynamics
augmentation, the formai loop shaping method gives us more flexibility in ma-~
nipulating the loop shapes to achieve design specifications. However, it usually
results in higher order controllers. As regards to which dynamics augmantation
procedure should be followed, the selection may be based on whether the right
or the left singular vectors can be better approximated by real vectors.

6.5 Design Examples

In this section, we illustrate the results of previous sections by designing a
LQG/LTR compensator for two aircraft control problems.
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Example 6.5.1 We first consider the aircraft control problem studied in [Ste84].
The plant has two inputs and two outputs, and it is stable and minimum phase.
It has strong directionality properties that vary with frequency. The problem
formulation is the same as the one in Section 6.2. The state space representation

of the plant is given by

—0.0226 —36.6000 —18.9000 -32.1000
0.0000 —1.9000 0.9830 0.0000

A=1 00123 —11.7000 —2.6300  0.0000
0.0000 00000 1.0000 0.0000
0.0000 0.0000
p—| —04140 00000 | . _[0.0000 57.3000 0.0000 0.0000
= | —77.8000 22.4000 |' ~ = | 0.0000 0.0000 0.0000 57.3000
0.0000 0.0000
The uncertainty is as described in (6.2.1) and (6.2.2) with weighting functions
given by
, (s) _ s+ 100
N~ 900

ras) = _8+3
157 2(s +0.03)
Plots of the plant singular values and condition number are given in Figure 6.4-

5. Note that the plant is ill-conditioned. Plots of weighting functions r,(s) and
ry(s) are given in Figure 6.6.

Our objective is to design an LQG/LTR compensator with the property that
#[M(jw)] < 1/4,Vw, for 4 as large as poesible. We shall try to achieve this
by manipulating the bounds for u[M], i.e., the quantities 4, and u3. From
the discussion of Section 6.2 and 6.3, it follows that as long as Q shares the high
gain/low gain structure of the plant, we can simply simply concentrate on making
1 small. The weighting selection can be judged by the structured singular value
plots of the resulting design.
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For our case, we first augment the plant by a scalar factor

a+1 . 8+ 100
8+0.03 s+ 2000

g(s) =5-

at the plant output. This will not change the gain spread in each loop and the
plant condition number remains the same.

The target state feedback loop is obtained from (6.3.3) and (6.3.4) with
A, B,C replaced by A,,B,,C, and R = I and H = C,. The loop-transfer
recovery is obtained using the Kalman filter with the parameter ¢* = 1000. The
structured singular value of the resulting design is given in Figure 6.7. One can
see that for this design, u[M(jw)] < 1.26,Vw, i.e., the system will remain stable
for simultaneous input and output uncertainties whose magnitudes are less than
135 © 0.8. Hence, a decent result can be obtained throur™ *he relatively simple
LQG/LTR procedure.

Example 6.5.3 We now consider the drone lateral attitude control problem stud-
ied by Ridgely and Banda [RiB86]. We shall use this example to illustrate that
when the plant is ill-conditioned, the singular value balancing method suggested
in [Ath86] may result in a nonrobust design. The state space representation of

the plant is given by

 —0.08527 —0.0001423 —0.9994 0.04142 0 0.1862 ]

—46.86 2757  0.3896 0 -1243 1288

A—| -04248 —0.06224 —0.08714 0 —8.792 ~20.46

= 0 1 00523 0 0 0

0 0 0 0o -2 0

i 0 0 0 0 0 -20
p_[00002 o] ,_[100000
“loooo 02|'““looo100
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Figure 6.7: Structured Singular Value, Example 6.5.1
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The plant is minimum phase, but unstable. The design specifications can be
represented by the following weighting functions on the input and output uncer-
tainties
ri(s) = 05s+1

=10

ry(s) = 252 +3)

8
Plots of the plant singular values and condition number are given in Figures
6.8-9. Note that the plant is ill-conditioned. Plots of weighting functions r,(s)

and ra(s) are given in Figure 6.10.

First, we examine two designs given in [RiB86]. Design 1 (see Table 13.6 in
[RiB86]) uses the singular value balancing methcd where the plant is augmented
by adding an integrator in each loop and the weighting function in the LQ design
was chosen in such a way that the singular values of the state feedback loop were
squeesed together at low frequencies. The authors of [RiB86] noticed that even
though this design satisfied design specifications at the plant input, it failed
to meet design specifications at the plant output. Design 2 (see Table 13.7 in
[RiB86]) also augments the plant by adding an integrator in each loop. In this
case the weighting functions in the LQ design is simply chosen as the plant, i.e.,
Q(s) = C(sI — A)~'B in our notation. The authors of [RiB86| noticed that, for
this design, the design specifications were not only satisfied at the plant input
but also at the plant output. Using our results in previous sections, we are able
to explain the above observations. Clearly, the weighting selection in Design 2
happens to satisfy the directionality requirements, hence the resulting design
meets condition (6.2.10), which implies a robust design against both input and
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output uncertainties. On the other hand, since the wex;htmg selection of Design 1
does not meet these directionality conditions and the plant is ill-conditioned, it
is not surprising that Design 1 results in a nonrobust design. In Figures 6.11-12,
we plot the bounds for the structured singular values of the two designs. One
can see that Design 1 indeed has much larger structured singular values than
Design 2.

Next, we illustrate that, by adding a little more dynamics to the plant output,
we can further improve Design 2. We first augment the plant by a scalar factor

_10(s +2)(s + 3)
9(s) = (s + 200)

at the plant output. The target state feedback loop is obtained from (6.3.3)
and (6.3.4) with A, B,C replaced by A,,B,,C, and R = I and H = C,. This
weighting selection satisfies the directionality criteria. The loop-transfer recovery
is obtained using the Kalman filter with the parameter ¢ = 1000. The bounds for

structured singular values of the resulting design is given in Figure 6.13. One can
see that for this design, the upper bound for u{M(jw)] is less than 1.65, Vw, while
the lower bound for u[M(jw)] of Design 2 is greater than 1.7 at some frequencies.

6.6 Concluding Remarks

In this chapter, we have considered the problem of obtaining stability robustness
in the presence of simultaneous input and output uncertainties. We demonstrate
how the LQG/LTR design methodology can be effective'y applied to this prob-
lem. The key in the application is the weighting selection in the LQ optimal state
feedback loop design. It is shown that the right singular subspaces of the return
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difference matrix of the target LQ optimal state feedback loop are uniquely de-
termined by that of the weighting functions of the LQ design. This provides an
effective means to obtain a compensator which achieves the loop-shaping con-
ditions derived in [FreB0]. To achieve stability robustness against simultaneous
input and output uncertainties, the singular subspace structure of the plant must
be taken into account in the weighting selection. Hence, both singular values and
singular subspace structures of the loop-transfer functions should be manipulated
to achieve a satisfactory design.
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Chapter 7

Conclusions and
Recommendations for Future
Research

A number of problems remain before a satisfactory robust muitivariable design
methodology is available. Some of these problems are now described.

It appears that ill-conditioned plants may be inherently difficult to robustly
control for some classes of uncertainty. However, the sise of the plant condition
number depends upon the units chosen with which to measure the plant input
and output signals. This fact is somewhat disturbing, as inherent difficulty of
a design problem should be independent of units. A little thought, however,
suggests that changing units to reduce the size of the plant condition number
may increase the size of the plant uncertainty. Hence the difficulty of the design
problem would be preserved under scaling. Further research is necessary to
resolve this matter.

The results described above focus on analysing system properties at a fixed
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frequency. Yet it is crucial to understand design tradeoffs that must be performed
between system properties in different frequency ranges. For example, it appears
that the inherent difficulty associated with ill-conditioned plants takes the form
of a frequency dependent design tradeoff. A tentative conjecture is that the
loop singular values must be separated by an amount proportional to the plant
condition number, and that the requirement for this separation aggravates the
tradeoff imposed by the Bode gain-phase relation. Verifying this conjecture seems
to require use of the multivariable gain-phase relations developed in [FrL:88].

Design limitations that are due to unstable poles and nonminimum phase
seros are fundamental in classical control design. These tradeoffs are governed
by integral relations. An important avenue of research is to extend these results
to multivariable systems using the mathematical tools developed in [FrL88].

The preceding analysis problems, and others, appear to lie at the heart of
understanding multivariable design tradeoffs. Once such an understanding is
available, it will be possible to incorporate it into design methodologies. This
should proceed along two lines. First, for systems with two or three inputs
and outputs it should be possible to develop a direct multivariable loop-shaping
methodology. Secondly, as was done in Chapters 5 and 6 of this report, methods
must be found to manipulate feedback properties expeditiously through weighting
function selection for formal synthesis procedures.
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Appendix A. Proof of Proposition 3.5.4

We shall first need several preliminary lemmas in order to prove Proposition 5.4. For

convenience, we shall also denote Ty = [ ::: ::: ] .

Lemma A.1 Let M be given in (3.4.3) withn =2, k= 1. Then,
rank[M] < 2 (A.1)

Proof: It can be readily verified that

TyP-}

M = diag[ry, r3, rs13] - [ So ] (P - h).

.
Lemma A.3 Let M be given in (3.4.9) withn =2, k=1, and let U = diag|u;, u3, us),
V = diag|vy, va, vs], where uy, uz, v1, v3 € C, us, vs € C¥L, |lu;]| = ||v;]| = 1. Then,

ranklVIMU] < 2 (A-2)

Proof: Noting that rank[U] = rank[V] = 8, and rank[M] < 2, the lemma follows
immediately from the well-known Sylvester inequality.

Lemma A.3 Let the interaction parameters be given in (3.4.11-13), end (3.4.17-18).

Suppose that n = 2, k = 1. Then these parameters are related via

()
#¥(1,2,3) < #%(1,3,2) + u*(1,2) - 2[rsSo) + w*(2,8): | r1tus |

+ #3(1,3) | ratss | + | ity | - | ratas | 2{rsSo] (A-3)
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(%)
“s(lsss 2) S “3(1’ 21 3) + ”’(l, 2) * 0[?330] + “,(2: 3)‘ I 'ltll I
+ M’(l, 3): | rates | + | r1tay | - | ratss | U[fgSo] (A4)
Proof: By symmetry, it suffices to show Part (i). Toward this end, choose uy = ug =
v=w=1u = (r:e,”P'ITo)B/"rgép_lTo", and vy = (rgSoPel)/"nSoPe;“ in

Lemma A.2. Consider the Laplace expansion of det[V¥MU] = 0. The result follows by

noting that

| ratrs || rata1 || v rsSous | < w?(1,2) - 2[rsSo)

| ritus || vg'raSoPes | 2[rsef P'To] < 4?(2,3): | ritu |

IA

| ratas ” rlcfP'lTous I Olrssopell < p’(l, 3)- | relss I

IA

| ratas || vl rsSoes I rlefP‘lToug | 4%(1,3,2)

| ratas || ratas || vE raSous | < | ritu |- | ratas | 2[rsSo)

and applying the triangle inequality.

Proof of Proposition 3.5.4
Proof: By symmetry, we assume u(1,2,3) = ps with no loss of generality. Then, it
suffices to prove

#(1,2,3) < 1.62maz {py, pa} (A.5)
Noticing that

p’(l,z, 3) - u’(1,3, 2)= l"(lvz) : l"(l: 3) l"(z: 3) (A.6)
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by definition, it follows from Part (i) of Lemma A.3 that

#(1,2)8%(2,8)6'(1,3)
#%(1,2,3)
+u2(2,3): | rata | +4*(1,3) | rataa |

#3(1,2,3) < + u*(1,2) - 2[rsSo]

+ | rat11 | - | ratas | 2[rsSo)
For convenience, let § = maz{u1, us}. The above inequality then reduces to
(u3)® — 40°(3) - 0° <0

Solving this inequality yields
u3 < (VB +2)0°

This completes the proof.
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Appendix B. Proof of Proposition 3.5.6

Proof: First note that the lower bound in (3.5.15) is a restatement of (3.4.14). In order
to show the upper bound, consider instead that M = diag[My), M3y, My] + M, where

0
o M”
Msx My O

It follows from Chapter 2 that u[M] < u1 + u[Mj]. From [7], it follows that u[M;) =
maxx.y l’[X'MIY] for X = d‘“(’h 3, 38] ad Y = d‘“’[ms V2, ”l], where z; and
y; are unit vectors with appropriate dimensions. It can then be readily verified that
u[My) < VuI(1,3) + p2(2,3). The proof is now completed by noticing that (3.5.16-18)
follow from straightforward calculations.
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Appendix C. Proof of Proposition 4.4.2

Before proving Proposition 4.4.2, we first consider a partition

N
M=§M(l), (cy)
where M(l) satisfies
My Fori=1,-- N+1-l,5=i+l-1;
M;i()=4{ M;; Fori=N+2-1,---,N,j=¢+1-1~ N; (C.2)
0 Otherwise

Note that M(!) has all blocks being sero, except My, My 41, =+, MN4+1-IN, MNJI-1 ***,
Mpy43-1,1. Specifically, there is only one block possibly being nonsero along each block-
row and block-column. To illustrate, consider N = 4.

Example C.1: Let N = 4. Then,

0 My 0 O
M(1) = diag[My;, Myy, Mss, My), M(2) = 0 0 My O

0 0 0 My’
Mg O 0 0
0 0 My O 0 0 0 M
_ 0 0 0 My _| M O 0 0
MB)=|p 0 o0 o |° MO=!"0" s 0 o
0 Mg O 0 0 0 Mg O

Proof of Proposition §.4.2: With no loss of generality, we assume uy = (713033 - - - oy )/V.
Note first that

- i -1
v = jaf 8(DM(2)D"]

. d ds dn }
- dx,l-l-!,fdn maz {d”lb d‘ﬂa- ) dl ON1 ¢ -

The solution to this minimisation problem is obtained by setting

J1=1

013°°O¢_14

d = ==, Vi
BN
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This leads to e
d. “--_ 1 ifi>j
500 = “:I' G-+
d; G ifi<g
N
and in turn to

’[ﬁM(’)ﬁ-ll = max { %ﬂu, Ji 3 03)+1," J—N;:—-'VN+2-I.1}

N+3-1
BNi3-t

“N+1-1"
e

IA

Next, notice that
u[M] < jof a[DMD‘l] < g1+ uN+ ZU[DM(I)D“]
=3

Hence
N+3-1

BNI3-
u[M] < +mv+2 gj::,:

This proves (4.4.3), and (4.4.4) is immediate.
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